精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2cosx(sinx-cosx)+1,x∈R.
(I)求函数f(x)的最小正周期;
(II)求函数f(x)在区间数学公式上的最小值和最大值.

解:(I)f(x)=2cosx(sinx-cosx)+1=sin2x-cos2x=
因此,函数f(x)的最小正周期为π.
(II)因为在区间上为增函数,在区间上为减函数,

故函数f(x)在区间上的最大值为,最小值为-1.
分析:(I)先利用二倍角公式和两角和公式对函数解析式化简整理,然后利用正弦函数的性质求得函数的最小正周期.
(II)根据正弦函数的单调性和x的范围,进而求得函数的最大和最小值.
点评:本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数y=Asin(ωx+?)的性质等基础知识,考查基本运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷