精英家教网 > 高中数学 > 题目详情

【题目】新中国昂首阔步地走进2019年,迎来了她70岁华诞.某平台组织了伟大的复兴之路一新中国70周年知识问答活动,规则如下:共有30道单选题,每题4个选项中只有一个正确,每答对一题获得5颗红星,每答错一题反扣2颗红星;若放弃此题,则红星数无变化.答题所获得的红星可用来兑换神秘礼品,红星数越多奖品等级越高.小强参加该活动,其中有些题目会做,有些题目可以排除若干错误选项,其余的题目则完全不会.

1)请问:对于完全不会的题目,小强应该随机从4个选项中选一个作答,还是选择放弃?(利用统计知识说明理由)

2)若小强有12道题目会做,剩下的题目中,可以排除一个错误选项、可以排除两个错误选项和完全不会的题目的数量比是.请问:小强在本次活动中可以获得最多红星数的期望是多少?

【答案】1)选择放弃作答;(272

【解析】

1)对于任一道完全不会的题目,若选择放弃,则获得的红星数为0,若选择作答,设小明从四个选项中选一个作答获得的红星数为ξξ5-2,列出其分布列,求出期望即可;

2)依题意,分别求出可以排除一个错误选项、可以排除两个错误选项的每道题目的可获得红星数的期望,由(1)知完全不会的题目可选择放弃,再求每类题目数与该类题目每道题的期望的乘积,最终求和即可得到结果.

1)对于任一道完全不会的题目,若选择放弃,则获得的红星数为0

若选择作答,设小明从四个选项中选一个作答获得的红星数为ξ,其分布列为:

ξ

5

P

所以,故应该选择放弃作答;

2)由题意知,可以排除一个选项的题目有道,

设这9道题目中每道题小明从四个选项中选一个作答获得的红星数为X,其分布列为:

X

5

P

所以:

可以排除两个选项的题目有道,

设这6道题目中每道题小明从四个选项中选一个作答获得的红星数为Y,其分布列为:

Y

5

P

完全不会的题目有道,

由(1)知应选择放弃,这3道题中每道题得到的红星数的期望为0

因此,小明在本次活动中可以获得的最多红星数的期望是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为菱形,且,过侧面中线的一个平面与直线垂直,并与此四棱锥的面相交,交线围成一个平面图形.

1)画出这个平面图形,并证明平面

2)若,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的长轴长为4,离心率为,点P在椭圆C上.

(1)求椭圆C的标准方程;

(2)已知点M (4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018101日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:

1)已知小李20189月份上交的税费是295元,10月份月工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李10月份的税后实际收入是多少?

2)某税务部门在小李所在公司利用分层抽样方法抽取某月100位不同层次员工的税前收入,并制成下面的频率分布直方图.

(ⅰ)请根据频率分布直方图估计该公司员工税前收入的中位数;

(ⅱ)同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

1)当时, 上恒成立,求实数的取值范围;

2)当时,若函数上恰有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为,点在椭圆上,且的周长为

1)求椭圆的方程;

2)已知过点的直线与椭圆交于两点,点在直线上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现代社会的竞争,是人才的竞争,各国、各地区、各单位都在广纳贤人,以更好更快的促进国家、地区、单位的发展.某单位进行人才选拔考核,该考核共有三轮,每轮都只设置一个项目问题,能正确解决项目问题者才能进入下一轮考核;不能正确解决者即被淘汰.三轮的项目问题都正确解决者即被录用.已知A选手能正确解决第一、二、三轮的项目问题的概率分别为,且各项目问题能否正确解决互不影响.

1)求A选手被淘汰的概率;

2)设该选手在选拔中正确解决项目问题的个数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,称(其中)为数列的前k项“波动均值”.若对任意的,都有,则称数列为“趋稳数列”.

1)若数列12为“趋稳数列”,求的取值范围;

2)若各项均为正数的等比数列的公比,求证:是“趋稳数列”;

3)已知数列的首项为1,各项均为整数,前项的和为. 且对任意,都有, 试计算:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为等边三角形,为等腰直角三角形,.平面平面ABD,点E与点D在平面ABC的同侧,且.FAD中点,连接EF.

1)求证:平面ABC

2)求证:平面平面ABD.

查看答案和解析>>

同步练习册答案