精英家教网 > 高中数学 > 题目详情
椭圆
x2
16
+
y2
25
=1
的焦点为F1,F2,P为椭圆上一点,若|PF1|=2,则|PF2|=(  )
A、2B、4C、6D、8
分析:由|PF1|,|PF2|为椭圆上一点到两个焦点的距离和椭圆的定义,知|PF1|+|PF2|=2a=10,由此能求出|PF2|值.
解答:解:根据椭圆的定义
椭圆
x2
4
+
y2
9
=1的上下两个焦点分别为F1、F2,点P为该椭圆上一点,
∴|PF1|+|PF2|=10,
若|PF1|=2,则|PF2|=8
故选D.
点评:本题考查椭圆的定义、椭圆的性质和应用,解题时要认真审题,注意公式的合理选用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
的两个焦点分别为F1(0,1),F2(0,1),椭圆的弦AB过点F2,且△ABF1的周长为4
2
,则椭圆E的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,与双曲线x2-y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①若p、q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件;
②若p为:?x∈R,x2+2x+2≤0,则¬p为:?x∈R,x2+2x+2>0;
③若椭圆
x2
16
+
y2
2
=1的两焦点为F1,F2,且弦AB过F1点,则△ABF2的周长为20;
④若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的充要条件.
在上述命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知双曲线与椭圆
x2
16
+
y2
6
=1
有相同的焦点,且渐近线方程为y=±
1
2
x
,则此双曲线方程为
x2
8
-
y2
2
=1
x2
8
-
y2
2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,双曲线
x2
2
-
y2
2
=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为(  )

查看答案和解析>>

同步练习册答案