精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则异面直线AC1与BB1所成的角为(  )
A.arctan
2
2
3
B.arccos
2
2
3
C.arcsin
1
3
D.arctan2
2

因为长方体ABCD-A1B1C1D1中,AA1BB1
∴∠A1AC1为异面直线异面AC1与BB1所成的角,
∵AA1⊥A1C1
∴△A1AC1为直角三角形,
∵AB=BC=2,
∴A1C1=2
2

∴tan∠A1AC1=
A1C1
AA1
=2
2

∴∴∠A1AC1=arctan2
2

故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知二面角,四边形为矩形,,且依次是的中点.
(1)  求二面角的大小;
(2)  求证:
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,将Rt△ABC沿斜边上的高AD折成1200的二面角C-AD-,若直角边AB=,AC=,则二面角A-B-D的正切值为(   )
A.B.
C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图∠BAC=90°,等腰直角三角形ABC所在的平面与正方形ABDE所在的平面互相垂直,则异面直线AD与BC所成角的大小是_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,E为C1C的中点,则异面直线D1A与EO所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,三棱锥P-ABC中,PA⊥平面ABC,△ABC是等边三角形,E是BC中点,若PA=AB,则异面直线PE与AB所成角的余弦值(  )
A.
3
7
14
B.
21
6
C.
5
10
D.
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
1
2
AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=
1
3
PD,求异面直线AE与PB所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点.
(1)求证:AB1平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直三棱柱ABC-A1B1C1,AC⊥BC,且CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为(  )
A.
5
5
B.
5
3
C.
2
5
5
D.
3
5

查看答案和解析>>

同步练习册答案