精英家教网 > 高中数学 > 题目详情
设P是椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
上的点,F1,F2是其焦点,若|PO|是|PF1|、|PF2|的等差中项,则P点的个数是 (  )
分析:由|PO|是|PF1|、|PF2|的等差中项得,|PO|=a,再利用椭圆的定义可求.
解答:解:由|PO|是|PF1|、|PF2|的等差中项得,|PO|=a,当且仅当P为椭圆左右顶点时,结论成立,
故选C
点评:本题主要考查椭圆的定义,考查椭圆的几何性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点F1、F2和短轴的两端点B1、B2正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为
2
-1

(1)求椭圆的标准方程;
(2)设P是椭圆上任一点,MN是圆C:x2+(y-2)2=1的任一条直径,求
PM
PN
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,设F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,直线l为左准线,直线l与x轴交于P点,MN为椭圆的长轴,已知
PM
=2
MF
,且|
MN
|=8

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点P作直线与椭圆交于A、B两点,求△ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆
x2a2
+y2=1   (a>1)
短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设P是椭圆
x2
a2
+y2=1   (a>1)
短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.

查看答案和解析>>

同步练习册答案