精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直三棱柱ABCA1B1C1中,AC3BC4AB5AA1=4,点DAB的中点.

(1)求证:ACBC1

(2)求证:AC1平面CDB1

(3)求异面直线AC1B1C所成角的余弦值.

【答案】(1)见解析(2)见解析(3) .

【解析】试题分析:(1)由勾股定理计算得ACBC,再由直棱柱性质得C1CAC最后根据线面垂直判定定理得AC平面BCC1B1即得ACBC1.2)设CB1C1B的交点为E,由三角形中位线性质得DE∥AC1再根据线面平行判定定理得结论(3)因为DE∥AC1所以CEDAC1B1C所成的角.再根据解三角形得所成角的余弦值.

试题解析:(1)证明:在直三棱柱ABCA1B1C1中,底面三边长AC3BC4AB5ACBC.

C1CAC.∴AC平面BCC1B1.

BC1平面BCC1BACBC1.

(2)证明:设CB1C1B的交点为E,连接DE,又四边形BCC1B1为正方形.

DAB的中点,EBC1的中点,DE∥AC1.

DE平面CDB1AC1平面CDB1

AC1平面CDB1.

(3)∵DE∥AC1

∴∠CEDAC1B1C所成的角.在CED中,EDAC1

CDABCECB12cosCED.

异面直线AC1B1C所成角的余弦值为.

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.

(1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直.

(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四面体P﹣ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=
(1)求证:PA⊥BD;
(2)已知E是PA上一点,且BE∥平面PCD.若PC=2,求点E到平面ABCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于空间两不同的直线,两不同的平面,有下列推理:

(1), (2),(3)

(4), (5)

其中推理正确的序号为( )

A. (1)(3)(4) B. (2)(3)(5) C. (4)(5) D. (2)(3)(4)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面 为等边三角形, 分别为的中点.

(1)求证: 平面.

(2)求证:平面平面.

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,求的最大值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)当时,求函数上的最大值;

(2)对任意的都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数在定义域内存在区间,使得该函数在区间上的值域为,则称函数是该定义域上的“和谐函数”.

(1)求证:函数是“和谐函数”;

(2)若函数是“和谐函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2 ,E,F分别是AD,PC的中点.

(1)证明:PC⊥平面BEF;
(2)求平面BEF与平面BAP所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案