【题目】如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.
(1)求证:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE.求直线BC与平面ABF所成角的大小,并求线段PH的长.
【答案】(1)详见解析(2)点H的坐标为().PH=2.
【解析】试题分析:(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos<n, >|,求出角α;设H(u,v,w),再设 (0<λ<1),用λ表示H的坐标,再由n =0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.
试题解析:
(1)在正方形AMDE中,因为B是AM的中点,所以AB∥DE.
又因为AB平面PDE,所以AB∥平面PDE.
因为AB平面ABF,且平面ABF∩平面PDE=FC,
所以AB∥FG.
(2)因为PA⊥底面ABCDE,所以PA⊥AB,PA⊥AE.
如图建立空间直角坐标系A-xyz,
则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),=(1,1,0).
设平面ABF的法向量为n=(x,y,z),则
即
令z=1,则y=-1.所以n=(0,-1,1).
设直线BC与平面ABF所成角为α,则
sinα=|cos<n, >|=||=.
因此直线BC与平面ABF所成角的大小为.
设点H的坐标为(u,v,w).
因为点H在棱PC上,所以可设=λ (0<λ<1),
即(u,v,w-2)=λ(2,1,-2),
所以u=2λ,u=λ,w=2-2λ.
因为n是平面ABF的法向量,所以n·=0,
即(0,-1,1)·(2λ,λ,2-2λ)=0.
解得λ=,所以点H的坐标为(,,).
所以PH==2.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= -lnx-.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:lnx≥-
(Ⅲ)判断曲线y=f(x)是否位于x轴下方,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF为梯形,EF∥DC,FD=FB.
(Ⅰ)若DC=2EF,求证:OE∥平面ADF;
(Ⅱ)求证:平面AFC⊥平面ABCD;
(Ⅲ)若AB=FB=2,AF=3,∠BCD=60°,求AF与平面ABCD所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·鸡西一模)在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足的实数λ的值有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为R的函数f(x),若f(x)在(-∞,0)和(0,+∞)上均有零点,则称函数f(x)为“含界点函数”,则下列四个函数中,不是“含界点函数”的是( )
A. f(x)=x2+bx-1(b∈R) B. f(x)=2-|x-1|
C. f(x)=2x-x2 D. f(x)=x-sin x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=x3-kx,其中实数k为常数.
(1)当k=4时,求函数的单调区间;
(2)若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)若销售金额(单位:万元)不低于平均值的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?
(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆右顶点与右焦点的距离为,短轴长为
(I)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为求直线AB的方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com