精英家教网 > 高中数学 > 题目详情

【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

10

50

个体经营户

100

50

150

合计

140

60

200

1)写出选择5个国家综合试点地区采用的抽样方法;

2)根据列联表判断是否有的把握认为此普查小区的入户登记是否顺利与普查对象的类别有关

3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.

附:

0.10

0.010

0.001

2.706

6.635

10.828

【答案】1)分层抽样,简单随机抽样(抽签亦可) 2)有 3)分布列见解析,

【解析】

1)根据题意可以选用分层抽样法,或者简单随机抽样法.

2)由已知条件代入公式计算出结果,进而可以得到结果.

3)由已知条件计算出的分布列,进而求出的数学期望.

1)分层抽样,简单随机抽样(抽签亦可).

2)将列联表中的数据代入公式计算得

所以有的把握认为此普查小区的入户登记是否顺利与普查对象的类别有关

3)以频率作为概率,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为可取0123,计算可得的分布列为:

0

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A.命题“若,则”的逆否命题是“若,则

B.”是“”的充分不必要条件

C.为假命题,则均为假命题

D.命题:“,使得”,则非:“

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】细叶青萎藤又称海风藤,俗称穿山龙,属木质藤本植物,是我国常用大宗中药材,以根茎入药,具有舒筋活血、祛风止痛、止咳平喘、强身健体等医疗保健功效.通过研究光照、温度和沙藏时间对细叶青萎藤种子萌发的影响,结果表明,细叶青萎藤种子发芽率和发芽指数均随着沙藏时间的延长而提高.

下表给岀了2019年种植的一批试验细叶青萎藤种子6组不同沙藏时间发芽的粒数.经计算:

沙藏时间(单位:天)

22

23

25

27

29

30

发芽数(单位:粒)

8

11

20

30

59

70

.其中分别为试验数据中的天数和发芽粒数,.

1)求关于的回归方程都精确到0.01);

2)在题中的6组发芽的粒数不大于30的组数中,任意抽岀两组,则这两组数据中至少有一组满足的概率是多少?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱ABCA1B1C16个顶点都在球O的球面上,若AB3AC3,∠BAC120°AA18,则球O的表面积为(

A.25πB.πC.100πD.π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线l的参数方程为t为参数,0απ),以坐标原点为极点,x轴正半轴为极轴建立及坐标系,曲线Cρsin2θ4cosθ

1)求lC的直角坐标方程;

2)若lC相交于AB两点,且|AB|,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M与直线相切,且与圆N外切

1)求动圆圆心M的轨迹C的方程;

2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为AB,当直线的斜率之积为时,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆)的上顶点为,圆经过点

(1)求椭圆的方程;

(2)过点作直线交椭圆两点,过点作直线的垂线交圆于另一点.若△PQN的面积为3,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.

20

21

21

25

32

33

36

37

42

43

44

45

45

58

58

59

61

66

74

75

76

77

77

78

78

82

83

85

86

90

(1)是否有的把握认为饮食习惯与月收入有关系?若有,请说明理由,若没有,说明理由并分析原因;

(2)从饮食指数在内的员工中任选2人,求他们的饮食指数均在内的概率;

(3)经调查某地若干户家庭的年收入(万元)和年饮支出(万元)具有线性相关关系,并得到关于的回归直线方程:.若一个员工的月收入恰好为这30人的月平均收入,估计该人的年饮食支出费用.

附:.

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

同步练习册答案