【题目】(2015·浙江卷)已知数列{an}满足a1=且an+1=an- (n∈N*).
(1)证明:1≤≤2(n∈N*);
(2)设数列{ }的前n项和为Sn,证明: (n∈N*).
【答案】(1)见解析(2)见解析
【解析】试题分析:(Ⅰ)根据已知条件确定数列{an}为递减数列,得到,再由数列递推可得到,从而得到的取值范围。
(Ⅱ)根据已知条件确定关于的表达式,再由(Ⅰ)中的结论得到的取值范围,即可确定的范围。
试题解析: (1)由题意得an+1-an=-a≤0,即an+1≤an,
故an≤.由an=(1-an-1)an-1得
an=(1-an-1)(1-an-2)…(1-a1)a1>0.
由0<an≤得==∈(1,2],
即1≤≤2成立.
(2)由题意得
a=an-an+1,所以Sn=a1-an+1.①
由-=和1≤≤2得1≤-≤2,
所以n≤-≤2n,
因此≤an+1≤ (n∈N*).②
由①②得≤≤ (n∈N*).
科目:高中数学 来源: 题型:
【题目】已知函数恰有3个零点,则实数的取值范围为( )
A. B. C. D.
【答案】A
【解析】,在上单调递减.若,则在上递增,那么零点个数至多有一个,不符合题意,故.故需当时,且,使得第一段有一个零点,故.对于第二段, ,故需在区间有两个零点, ,故在上递增,在上递减,所以,解得.综上所述,
【点睛】本小题主要考查函数的图象与性质,考查含有参数的分段函数零点问题的求解策略,考查了利用导数研究函数的单调区间,极值,最值等基本问题.其中用到了多种方法,首先对于第一段函数的分析利用了分离常数法,且直接看出函数的单调性.第二段函数利用的是导数来研究图像与性质.
【题型】单选题
【结束】
13
【题目】设, 满足约束条件,则的最大值为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王在某社交网 络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.
(1)若小王发放5元的红包2个,求甲恰得1个的概率;
(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X,求X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图 所示,一条直角走廊宽为,
(1)若位于水平地面上的一根铁棒在此直角走廊内,且,试求铁棒的长;
(2)若一根铁棒能水平地通过此直角走廊,求此铁棒的最大长度;
(3)现有一辆转动灵活的平板车,其平板面是矩形,它的宽为如图2.平板车若想顺利通过直角走廊,其长度不能超过多少米?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x+1)+ (a∈R).
(1)当a=1时,求函数f(x)在点(0,f(0))处的切线方程;
(2)讨论函数f(x)的极值;
(3)求证:ln(n+1)> (n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}是等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求通项公式an;
(2)若数列{an}为递增数列,令bn=an+1+an+2+an+3+an+4,求数列{}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥的底面为直角梯形,,,,为正三角形.
(1)点为棱上一点,若平面,,求实数的值;
(2)求点B到平面SAD的距离.
【答案】(1);(2)
【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得;
(2)利用等体积法可求点到平面的距离.
试题解析:((1)因为平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.
因为,
.
(2)因为 , ,
所以平面,
又因为平面,
所以平面平面,
平面平面,
在平面内过点作直线于点,则平面,
在和中,
因为,所以,
又由题知,
所以,
由已知求得,所以,
连接BD,则,
又求得的面积为,
所以由点B 到平面的距离为.
【题型】解答题
【结束】
19
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:
日均派送单数 | 52 | 54 | 56 | 58 | 60 |
频数(天) | 20 | 30 | 20 | 20 | 10 |
回答下列问题:
①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据: , , , , , , , , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列的公比,前项和为,且满足.,,分别是一个等差数列的第1项,第2项,第5项.
(1)求数列的通项公式;
(2)设,求数列的前项和;
(3)若,的前项和为,且对任意的满足,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com