精英家教网 > 高中数学 > 题目详情

【题目】(本大题满分12分)

随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求关于的线性回归方程,并预测公司2017年4月的市场占有率;

(Ⅱ)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如下:

经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

参考公式:回归直线方程为,其中.

【答案】(Ⅰ).

(Ⅱ)应该采购款车.

【解析】试题分析)根据数据,分别求得,利用公式分别求得的值,得出线性回归方程,即可预测公司20174月的市场占有率;(Ⅱ)分别计算相应的数学期望,即可得出结论.

试题解析)由题意:.

时,即预测公司20174月份()的市场占有率为.

(Ⅱ)由频率估计概率,每辆款车可使用1年,2年,3年,4年的概率分别为.

∴每辆款车的利润数学期望为(),每辆款车可使用1年,2年,3年,4年的概率分别为.

∴每辆款车的利润数学利润为()

∴应该采购款车.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点 ,两个焦点与短轴的一个端点构成等边三角形.

)求椭圆的标准方程;

)过焦点 轴的垂线交椭圆上半部分于点,过点作椭圆的弦,设弦 所在的直线分别交轴于两点,若为等腰三角形时,问直线的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面几何中,有边长为的正三角形内任意点到三边距离之和为定值.类比上述命题,棱长为的正四面体内任一点到四个面的距离之和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为圆上的动点,点轴上的投影为,动点满足,动点的轨迹为.

(1)求的方程;

(2)设轴正半轴的交点为,过点的直线的斜率为交于另一点为.若以点为圆心,以线段长为半径的圆与有4个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄金分割起源于公元前世纪古希腊的毕达哥拉斯学派,公元前世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,公元前年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,把称为黄金分割数. 已知双曲线的实轴长与焦距的比值恰好是黄金分割数,则的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:fx)=x2mxnm, nR).

1)若m+n0,解关于x的不等式fxx(结果用含m式子表示);

2)若存在实数m,使得当x[12]时,不等式xfx≤4x恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为,乙每次投中的概率为,每人分别进行三次投篮.

(I)记甲投中的次数为,求的分布列及数学期望

(Ⅱ)求乙至多投中2次的概率;

(Ⅲ)求乙恰好比甲多投进2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的极值点的个数;

,求证:

查看答案和解析>>

同步练习册答案