精英家教网 > 高中数学 > 题目详情
6.已知函数{an}满足an+1+1=$\frac{{a}_{n}+1}{2{a}_{n}+3}$,且a1=1,则数列{$\frac{2}{{a}_{n}+1}$}的前20项和为780.

分析 利用数列的递推关系式转化求出数列{$\frac{1}{{a}_{n}+1}$}是以$\frac{1}{2}$为首项,2为公差的等差数列,然后求解所求数列的和即可.

解答 解:由an+1+1=$\frac{{a}_{n}+1}{2{a}_{n}+3}$,得$\frac{2{a}_{n}+3}{{a}_{n}+1}=\frac{1}{{a}_{n+1}+1}$,即$\frac{1}{{a}_{n+1}+1}-\frac{1}{{a}_{n}+1}=2$,
∴数列{$\frac{1}{{a}_{n}+1}$}是以$\frac{1}{2}$为首项,2为公差的等差数列,则$\frac{1}{{a}_{n}+1}=2n-\frac{3}{2}$,
∴数列$\{\frac{2}{{a}_{n}+1}\}$是以1为首项,4为公差的等差数列,
其前20项的和为:20+10×19×4=780.
故答案为:780.

点评 本题考查数列的递推关系式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知复数z1满足z1(1-i)=2(i为虚数单位),若复数z1满足z1+z2是纯虚数,z1•z2是实数,求复数z2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$f(x)=-\frac{1}{2}{x^2}+bln({2x+4})$在(-2,+∞)上是减函数,则b的范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若椭圆的焦距为2,且$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC⊥BC,BC=C1C=$\frac{1}{2}AC$=1,D是A1C1上的一点,且C1D=kA1C1
(Ⅰ) 求证:不论k为何值,AD⊥BC;
(Ⅱ) 当k=$\frac{1}{2}$时,求A点到平面BCD的距离;
(Ⅲ) DB与平面ABC所成角θ的余弦值为$\frac{{\sqrt{5}}}{3}$,求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.记数列{an}的前n项和为Sn,若Sn=3an+1,则a10=(  )
A.-$\frac{{3}^{9}}{{2}^{10}}$B.-$\frac{{3}^{10}}{{2}^{10}}$C.$\frac{{3}^{9}}{{2}^{10}}$D.$\frac{{3}^{10}}{{2}^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=sin($\frac{5π}{3}$x+$\frac{π}{6}$)+$\frac{3x}{2x-1}$,则f($\frac{1}{2016}$)+f($\frac{3}{2016}$)+f($\frac{5}{2016}$)+f($\frac{7}{2016}$)+…f($\frac{2015}{2016}$)=1512.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.两定点A(-2,0),B(2,0)及定直线$l:x=\frac{10}{3}$,点P是l上一个动点,过B作BP的垂线与AP交于点Q,则点Q的轨迹方程为$\frac{{x}^{2}}{4}$+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设偶函数f(x)满足f(x)=log4(x+2)-1(x≥0),则{x|f(x-2)>0}等于(  )
A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}

查看答案和解析>>

同步练习册答案