精英家教网 > 高中数学 > 题目详情
8.已知关于x的函数y=-2sin2x-2acosx-(2a-1),x∈R,常数a∈R.
(1)求y的最小值f(a);
(2)求使f(a)=$\frac{1}{2}$的a值,并求出此时函数y的最大值.

分析 (1)由三角函数公式化简可得y=2(cosx-$\frac{a}{2}$)2-($\frac{{a}^{2}}{4}$+2a+1),结合二次函数的最值分类讨论可得;
(2)由(1)分别令f(a)=$\frac{1}{2}$,解方程可得a值,代值计算可得最值.

解答 解:(1)由三角函数公式化简可得y=-2sin2x-2acosx-(2a-1)
=-2(1-cos2x)-2acosx-(2a-1)=2cos2x-2acosx-(2a+1)
=2(cosx-$\frac{a}{2}$)2-($\frac{{a}^{2}}{4}$+2a+1),
当$\frac{a}{2}$≤-1即a≤-2时,当cosx=-1时函数取最小值f(a)=1;
当$\frac{a}{2}$≥1即a>2时,当cosx=1时函数取最小值f(a)=1-4a;
当-1<$\frac{a}{2}$<1即-2<a<2时,当cosx=$\frac{a}{2}$时函数取最小值f(a)=$\frac{{a}^{2}}{4}$+2a+1;
综上可得y的最小值f(a)=$\left\{\begin{array}{l}{1,a≤-2}\\{\frac{{a}^{2}}{4}+2a+1,-2<a<2}\\{1-4a,a>2}\end{array}\right.$;
(2)当a≤-2时,f(a)=1$≠\frac{1}{2}$;
当a>2时,令f(a)=1-4a=$\frac{1}{2}$可解得a=$\frac{1}{8}$,舍去;
当-2<a<2时,令f(a)=$\frac{{a}^{2}}{4}$+2a+1=$\frac{1}{2}$可解得a=-4+3$\sqrt{2}$,或a=-4+3$\sqrt{2}$(舍去);
故使f(a)=$\frac{1}{2}$的a值为-4+3$\sqrt{2}$,此时函数y的最大值为27-18$\sqrt{2}$

点评 本题考查三角函数的最值,涉及二次函数的最值和分类讨论的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知抛物线的顶点在原点,焦点在y轴正半轴上,抛物线上一点的横坐标为2,且该点到焦点的距离为2.
(1)求抛物线的标准方程;
(2)与圆x2+(y+2)2=4相切的直线l:y=kx+t交抛物线于不同的两点M、N,若抛物线上一点C满足$\overrightarrow{OC}$=λ($\overrightarrow{OM}$+$\overrightarrow{ON}$)(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为f(x)的上界.已知函数f(x)=x2-4mx+2m+6,g(x)=f(log3x).
(1)若m=1,判断函数g(x)在区间(0,3]上是否为有界函数?若是,写出它的一个上界M的值,若不是,说明理由;
(2)若函数f(x)在[0,3]上是以10为上界的有界函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆中心在原点,焦点在x轴上,若存在过椭圆左焦点的直线L交椭圆于P、Q两点,使得OP⊥OQ,则椭圆离心率的取值范围为$[\frac{\sqrt{5}-1}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函教f(x)=2sin(2x-$\frac{π}{3}$).
(1)用”五点法“作出该函数在一个周期内的简图;
(2)求函数f(x)的最大值及取得最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2cos($\frac{π}{3}$-2x)
(1)若f(x)=1,x∈[-$\frac{π}{6}$,$\frac{π}{4}$],求x的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知角α终边上一点P(m,1),cosα=-$\frac{1}{3}$.
(1)求实数m的值;
(2)求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=2sin(2x-$\frac{π}{3}$)的图象与直线y=a在y轴右侧从左到右第n个交点的横坐标为an,且数列{an}是等差数列,则a的取值集合为{0,2,-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知复数z满足|z+4|=|z+4i|.
(1)若复数z对应复平面上的点P(x,y),求P的轨迹方程;
(2)又若z+$\frac{14-z}{z-1}$∈R,求复数z.

查看答案和解析>>

同步练习册答案