精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且在x轴上的顶点分别为A1(-2,0),A2(2,0).
(1)求椭圆方程;
(2)若直线l:x=t(t>2)与x轴交于点T,P为l上异于T的任一点,直线PA1、PA2分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.
分析:(1)由题意得,e=
c
a
=
3
2
,a=2
,从而求得b、c的值,从而求得椭圆的方程.
(2)设M(x1,y1),N(x2,y2),把直线方程代入椭圆的方程解出M点、N点坐标,由直线A1M与直线A2N的交点P(t,yp)在直线l上,求出直线MN与x轴交点坐标,从而求得线MN是通过椭圆的焦点的条件.
解答:解:(1)由已知椭圆C的离心率e=
c
a
=
3
2
,a=2
,可得 c=
3
,b=1

∴椭圆的方程为
x2
4
+y2=1

(2)设M(x1,y1),N(x2,y2),直线A1M斜率为k1,则直线A1M的方程为y=k1(x+2),
y=k1(x+2)
x2
4
+y2=1
,解得x1=
-8
k
2
1
+2
4
k
2
1
+1
y1=
4k1
4
k
2
1
+1
,∴M点坐标为(
-8
k
2
1
+2
4
k
2
1
+1
4k1
4
k
2
1
+1
).
同理,设直线A2N的斜率为k2则N点坐标为(
8
k
2
2
-2
4
k
2
2
+1
-4k2
4
k
2
2
+1
).
由直线A1M与直线A2N的交点P(t,yp)在直线l上,
又yp=k1(t+2),yp=k2(t-2),∴k1(t+2)=k2(t-2),∴
k1-k2
k1+k2
=-
2
t

又MN的方程为
y-y1
x-x1
=
y2-y1
x2-x1
,令y=0,得  x=
x2y1-x1y2
y1-y2
=
4
t

即直线MN与x轴交点为(
4
t
,0)
,又t>2,∴0<
4
t
<2

又椭圆右焦点为(
3
,0)
,故当 t=
4
3
3
时,MN
过椭圆的焦点.
点评:本题考查椭圆的标准方程,以及椭圆的简单性质的应用.由于A1、A2两点已知,故易求得直线与椭圆的交点M和N的坐标,这样就易求出MN与x轴的交点,在计算过程中要注意计算的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案