已知函数 y = f (x) 是定义在R上的增函数,函数 y = f (x-1) 的图象关于点 (1, 0)对称. 若对任意的 x, y∈R,不等式 f (x2-6x + 21) + f (y2-8y) < 0 恒成立,则当 x > 3 时,x2 + y2 的取值范围是( )
A.(3, 7) B.(9, 25) C.(13, 49) D. (9, 49)
C
【解析】解:∵函数y=f(x-1)的图象关于点(1,0)对称,
∴函数y=f(x)的图象关于点(0,0)对称,
即函数y=f(x)为奇函数,则f(-x)=-f(x),
又∵f(x)是定义在R上的增函数且f(x2-6x+21)+f(y2-8y)<0恒成立
∴(x2-6x+21)<-f(y2-8y)=f(8y-y2)恒成立,
∴x2-6x+21<8y-y2,
∴(x-3)2+(y-4)2<4恒成立,
设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,
则d=表示区域内的点和原点的距离.
由下图可知:d的最小值是OA=
OB=OC+CB,5+2=7,
当x>3时,x2+y2的范围为(13,49)
故答案为:(13,49)
科目:高中数学 来源:2001~2002学年度 第一学期 教学目标检测 高三数学 题型:013
已知函数y=f(x)的定义域为R,f(x-2)=f(3-x),则下列各式中与f(-1)相等的是
[ ]
查看答案和解析>>
科目:高中数学 来源:2012年人教A版高中数学必修四1.6三角函数模型的简单应用练习卷(解析版) 题型:选择题
已知函数y=f(x)的图象如图所示,则函数y=fsinx在[0,π]上的大致图象是( )
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高三单元测试文科数学试卷 题型:选择题
已知函数y=f(2x)定义域为[1,2],则y=f(log2x)的定义域为
A.[1,2] B.[4,16] C.[0,1] D.(-∞,0]
查看答案和解析>>
科目:高中数学 来源:2010-2011年吉林一中高二下学期第一次月考数学理卷 题型:选择题
已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf′(x)<0的解集为 ( )
A (-∞,)∪(,2) B (-∞,0)∪(,2)
C (-∞,∪(,+∞) D (-∞,)∪(2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com