精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点分别为F1,F2,A为上端点,P为椭圆上任一点(与左、右顶点不重合).
(1)若AF1⊥AF2,求椭圆的离心率;
(2)若P(-4,3)且
PF1
PF2
=0,求椭圆方程;
(3)若存在一点P使∠F1PF2为钝角,求椭圆离心率的取值范围.
考点:直线与圆锥曲线的综合问题
专题:向量与圆锥曲线
分析:(1)由AF1⊥AF2,据对称性,△F1AF2为等腰直角三角形,即AO=OF2,从而得到b=c,结合a2=b2+c2
可求椭圆的离心率;
(2)由点的坐标求得
PF1
PF2
的坐标,代入
PF1
PF2
=0求得c的值,再由P(-4,3)在椭圆上联立方程组求得a2,b2的值,则椭圆方程可求;
(3)由∠F1PF2为钝角,得到
PF1
PF2
<0
有解,转化为c2x02+y02有解,求出x02+y02的最小值后求得椭圆离心率的取值范围.
解答: 解:(1)如图,若AF1⊥AF2,据对称性,△F1AF2为等腰直角三角形,即AO=OF2,即b=c,
e=
c
a
=
c
b2+c2
=
2
2

(2)设F1(-c,0),F2(c,0),
则有
PF1
=(-c+4,-3),
PF2
=(c+4,-3)

PF1
PF2
=0

∴(4-c)(4+c)+9=0,即c2=25,
16
a2
+
9
b2
=1
a2=b2+c2
,解得
a2=40
b2=15

即椭圆方程为
x2
40
+
y2
15
=1

(3)设P(x0,y0),则|x0|<a,即0≤x02a2
又∠F1PF2∈(0,π).
若∠F1PF2为钝角,当且仅当
PF1
PF2
<0
有解,
c2x02+y02有解,即c2>(x02+y02)min
x02
a2
+
y02
b2
=1

y02=b2-
b2
a2
x02

x02+y02=b2+
c2
a2
x02∈[b2a2)

(x02+y02)min=b2
故c2>b2,c2>a2-c2
c2
a2
1
2
,即e>
2
2

又0<e<1,
2
2
e<1
点评:本题考查了直线与圆锥曲线的关系,考查了平面向量数量积在解题中的应用,体现了数学转化思想方法,解答此题的关键在于把存在一点P使∠F1PF2为钝角转化为
PF1
PF2
<0
有解,是压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

类比边长为2a的正三角形内的一点到三边的距离之和为
3
a,对于棱长为6a的正四面体,正确的结论是(  )
A、正四面体内部的一点到六条棱的距离的和为2
3
a
B、正四面体内部的一点到四面的距离的和为2
6
a
C、正四面体的中心到四面的距离的和为2
6
a
D、正四面体的中心到六条棱的距离的和为9
2
a

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2-2x+5=0的一个根是1-2i,则另一个根为(  )
A、1+2iB、-1+2i
C、2+iD、2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中正确的有(  )
①若任取x1,x2∈I,当x1<x2时,f (x1)<f (x2),则y=f (x)在I上是增函数;
②函数y=x2在R上是增函数;  
③函数y=-
1
x
在定义域上是增函数;
④y=
1
x
的单调递减区间是(-∞,0)∪(0,+∞).
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-ax2+bx.
(1)若a>0,b>0,且不等式f(x)≤1在R上恒成立,求证:b≤2
a

(2)若a=-
1
4
,且不等式f(x)≤1在[0,1]上恒成立,求实数b的取值范围;   
(3)设0<a<1,b>0,求不等式|f(x)|≤1在x∈[0,1]上恒成立的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

中日“钓鱼岛争端”问题越来越引起社会关注,我校对高一600名学生进行了一次“钓鱼岛”知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
分 组频 数频 率
[50,60)20.04
[60,70)80.16
[70,80)10
[80,90)
[90,100]140.28
合 计1.00
(1)填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级的平均数及中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2(x≤-1)
x2(x>0)

(1)求f(-4)、f(f(-1))的值;
(2)若f(a)=
1
4
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,其中a1=25,a4=16.
(1)求{an}的通项;  
(2)数列{an}从哪一项开始小于0;
(3)求|a1|+|a2|+|a3|+…+|a20|值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是正方体的表面展开图,则下列描述正确的是(  )
A、BM与ED平行
B、CN与BM相交
C、CN与BE异面
D、DM与AF平行

查看答案和解析>>

同步练习册答案