精英家教网 > 高中数学 > 题目详情
11.下列函数中,既是奇函数又在区间[-2,2]上单调递增的是(  )
A.f(x)=sinxB.f(x)=ax+a-x(a>0,a≠1)
C.f(x)=ln$\frac{3+x}{3-x}$D.f(x)=ax-a-x,(a>0,a≠1)

分析 分别判断四个答案中是否满足既是奇函数又在[-2,2]上单调递增,易得到答案

解答 解:A.sinx在[$\frac{π}{2},2$]上单调递减;
B.f(0)=2≠0,∴f(x)不是奇函数;
C.f(-x)=ln$\frac{3-x}{3+x}$=-ln$\frac{3+x}{3-x}$=-f(x),∴f(x)是奇函数,
设x1,x2∈[-2,2],且x1<x2,则f(x1)-f(x2)=ln$\frac{3+{x}_{1}}{3-{x}_{1}}$-ln$\frac{3+{x}_{2}}{3-{x}_{2}}$=ln$\frac{(3+{x}_{1})(3-{x}_{2})}{(3-{x}_{1})(3+{x}_{2})}$,
∵x1<x2
∴3+x1<3+x2,3-x2<3-x1
∴$\frac{(3+{x}_{1})(3-{x}_{2})}{(3-{x}_{1})(3+{x}_{2})}$<1,
∴ln$\frac{(3+{x}_{1})(3-{x}_{2})}{(3-{x}_{1})(3+{x}_{2})}$<0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在区间[-2,2]上单调递增,
D.f′(x)=(ax+a-x)lna;
∴0<a<1时,lna<0,f′(x)<0;
∴f(x)单调递减.
故选:C.

点评 (1)若奇函数经过原点,则必有f(0)=0,这个关系式大大简化了解题过程,要注意在解题中使用.(2)对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义  ( 基本步骤为取 点、作差或作商、变形、判断)求解.可导函数则可以利用导数解之.(3)运用函数的单调性是求最值(或值域)的常用方法之一,特别对于抽象函数,更值得关注.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的右焦点到抛物线y2=4x的准线的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥\frac{1}{2}(x-3)}\end{array}\right.$,则z=2x+y的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的单调函数f(x)的值域是(-∞,0),则关于x的方程[f(x)]3-3f(x)-1=0的解的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的奇函数f(x)满足:对任意的x∈R,都有f(x)=f(4-x),且x∈(0,2)时,f(x)=x+1,则f(5)等于(  )
A.-2B.2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若指数函数过点(2,4),则它的解析式为(  )
A.y=2xB.y=(-2)xC.y=($\frac{1}{2}$)xD.y=(-$\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线x-y+$\sqrt{10}$=0被圆M:x2+y2-4x-4y-1=0所截得的弦长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.不使用计算器,计算下列各题:
(1)(log3$\sqrt{3}$)2+[log3(1+$\sqrt{2}$+$\sqrt{3}$)+log3(1+$\sqrt{2}$-$\sqrt{3}$)]•log43;
(2)log3$\sqrt{27}$+lg25+lg4+7${\;}^{lo{g}_{7}2}$+(-9.8)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且a2-(b-c)2=(2-$\sqrt{3}$)bc,sinAsinB=cos2$\frac{C}{2}$,
(1)求角B的大小;
(2)若等差数列{an}的公差不为零,且a1cos2B=1,且a2、a4、a8成等比数列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

同步练习册答案