精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的有________(只填序号)

①若直线与平面有无数个公共点,则直线在平面内;

②若直线l上有无数个点不在平面α,lα;

③若两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;

④若直线l与平面α平行,l与平面α内的直线平行或异面;

⑤若平面α∥平面β,直线aα,直线bβ,则直线ab.

【答案】①④

【解析】

根据空间线线、线面和面面位置关系有关定理,对五个命题逐一分析,由此得出正确命题的序号.

对于①,根据公理,直线有两个点在平面内,则直线在平面内,故①正确.

对于②,当直线和平面相交时,直线上有无数个点不在平面内,故②错误.

对于③,若两条异面直线中的一条与一个平面平行,另一条直线可能在该平面内,故③错误.

对于④,当直线和平面平行时,与平面没有公共点,故直线和平面内的直线平行或异面,故④正确.

对于⑤,两条直线可能异面,故⑤错误.

综上所述,正确的命题序号是:①④.

故填:①④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为棱的中点,

(1)证明

(2)若点为棱上一点,且求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,a= ,b+c=3(b>c),求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若函数有两个零点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

(1)若极大值;

(2)若无零点,求实数的取值范围;

(3)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的值域;

(2)当时,求的最小值

(3)当时,若,都,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店每天做若干个生日蛋糕,每个制作成本为50元,当天以每个100元售出,若当天白天售不出,则当晚以30元/个价格作普通蛋糕低价售出,可以全部售完.

(1)若蛋糕店每天做20个生日蛋糕,求当天的利润(单位:元)关于当天生日蛋糕的需求量(单位:个, )的函数关系;

(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:

(ⅰ)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;

(ⅱ)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)(exa)2(exa)2(a≥0)

(1)f(x)表示成u(其中u)的函数;

(2)f(x)的最小值.

查看答案和解析>>

同步练习册答案