分析 (Ⅰ)连结BD,推导出D1D⊥AC,AC⊥BD.由此能证明AC⊥BD1.
(Ⅱ)作出满足条件的直线一定在平面ACC1A1中,且过BD1的中点并与直线A1A,C1C相交.
解答 (本题满分9分)
(Ⅰ)证明:如图,连结BD.
∵正方体ABCD-A1B1C1D1,
∴D1D⊥平面ABCD.
∵AC?平面ABCD,∴D1D⊥AC.
∵四边形ABCD是正方形,∴AC⊥BD.
∵BD∩D1D=D,∴AC⊥平面BDD1.
∵BD1?平面BDD1,∴AC⊥BD1.…(5分)
(Ⅱ)存在.答案不唯一,
作出满足条件的直线一定在平面ACC1A1中,
且过BD1的中点并与直线A1A,C1C相交.
下面给出答案中的两种情况,
其他答案只要合理就可以给满分.(9分)
点评 本题考查线线垂直的证明,考查满足条件的直线的作法,是中档题,解题时要认真题、注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2\sqrt{3}$ | B. | $4\sqrt{3}$ | C. | $\frac{2}{3}\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{28}{75}$ | B. | $\frac{28}{75}$ | C. | -$\frac{56}{75}$ | D. | $\frac{56}{75}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com