精英家教网 > 高中数学 > 题目详情
函数f(x)=x3+
12
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.
分析:(1)若f(x)在x∈(-∞,+∞)上是增函数,则利用f'(x)≥0恒成立.
(2)利用换元法,将函数转化为一元二次函数,利用一元二次函数的单调性求函数的最小值.
(3)利用导数求切线斜率,利用条件求出集合A,B,然后利用集合A,B元素关系判断集合之间的关系.
解答:解:(1)因为f'(x)=3x2+ax+1,若△=a2-12<0,即-2
3
<a<2
3
时,都有f'(x)>0,此时函数在R上单调递增.
若△=0,即a=±2
3
时,f'(x)≥0,所以此时函数在R上单调递增.
若△>0,显然不合题意,
综上若函数在R上单调递增,则实数a的取值范围[-2
3
,2
3
].
(2)设t=ex,则t∈[1,2],h(t)=t2-at=(t-
a
2
)2-
a2
4

-
3
a
2
≤1
,即-2
3
≤a≤2
时,h(t)在[1,2]上是增函数,所以当t=1时,h(t)的最小值为h(1)=1-a,也是最小值.
1<
a
2
3
,即2<a≤2
3
时,h(t)的最小值为h(2
3
)=12-2
3
a

(3)集合A,B之间的关系为B是A的真子集.
证明如下:当a=0时,f(x)=x3+x+1,f'(x)=3x2+1≥1,故A=[1,+∞).
设PQ的斜率为k,则k=
f(x1)-f(x2)
x1-x2
=
x
2
1
+x1x2+
x
2
2
+1=(x1+
x2
2
)
2
+
3
4
x
2
2
+1

(x1+
x2
2
)
2
+
3
4
x
2
2
=0
,当且仅当
x2=0
x1+
x2
2
=0
,即x1=x2=0,这与已知x1≠x2矛盾,
所以(x1+
x2
2
)
2
+
3
4
x
2
2
>0
,由此可得k>1,所以B=(1,+∞),
即B是A的真子集.
点评:本题主要考查了利用导数研究函数的单调,综合性较强,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案