【题目】已知函数,且在处的切线方程为.
(1)求的解析式,并讨论其单调性.
(2)若函数,证明:.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x-a|+|2x-1|(a∈R).
(1)当a=-1时,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形,,,将沿矩形的对角线所在的直线进行翻折,在翻折过程中,则( ).
A. 当时,存在某个位置,使得
B. 当时,存在某个位置,使得
C. 当时,存在某个位置,使得
D. 时,都不存在某个位置,使得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数且.
(1)求p,q的值以及函数的表达式,并写出的定义域D;
(2)设函数,A=,集合,当时,求实数k的取值范围;
(3)当时,设,数列的前n项和为,直线的斜率为,是否存在实数,使对一切恒成立,若存在,分别求出实数的取值范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的右焦点为,离心率为,是椭圆上位于第一象限内的任意一点,为坐标原点,关于的对称点为,,圆:.
(1)求椭圆和圆的标准方程;
(2)过点作与圆相切于点,使得点,点在的两侧.求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,P是圆x2+y2=4上的动点,P点在x轴上的射影是D,点M满足.
(Ⅰ)求动点M的轨迹C的方程
(Ⅱ)设A、B是轨迹C上的不同两点,点E(﹣4,0),且满足,若λ∈[,1),求直线AB的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为 曲线的极坐标方程为,与交于点.
(1)写出曲线的普通方程及直线的直角坐标方程,并求;
(2)设为曲线上的动点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 ,过点的直线的参数方程为(为参数),与交于两点
(1) 求的直角坐标方程和的普通方程;
(2) 若,,成等比数列,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com