精英家教网 > 高中数学 > 题目详情
(本题满分12分)如图,在多面体ABCDE中,,,是边长为2的等边三角形,CD与平面ABDE所成角的正弦值为.

(1)在线段DC上是否存在一点F,使得,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角的平面角的余弦值.
(Ⅰ)存在F为CD中点,DF=时,使得(Ⅱ)

试题分析:(Ⅰ)取AB的中点G,连结CG,则
,可得,所以
所以,CG=,故CD=  ……2分
取CD的中点为F,BC的中点为H,因为,所以为平行四边形,得,………………………………4分

平面  ∴
存在F为CD中点,DF=时,使得……6分
(Ⅱ)如图建立空间直角坐标系,则、        
,从而, 

为平面的法向量,

可以取 ……………………8分
为平面的法向量,
  ……10分
因此,,…………11分
故二面角的余弦值为……………12分
点评:求解和证明立体几何问题一方面可以直接利用几何方法,通过证明或找到线面之间的关系,依据判定定理或性质进行证明求解.但是本法的难在证明线面关系,难在作角、找角.空间向量方法是证明垂直、平行、求角的好方法,因其避开了“做,找”,所以其应用的难度大大的降低了.利用空间向量法证明垂直,即证明向量的数量积等于0;若求二面角则通过两个半平面的法向量的夹角进行求解判断。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知:如图,中,是角平分线。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下五个命题中,正确命题的个数是________.
① 不共面的四点中,其中任意三点不共线;
② 若
③ 对于四面体ABCD,任何三个面的面积之和都大于第四个面的面积;
④ 对于四面体ABCD,相对棱AB CD 所在的直线是异面直线;
⑤ 各个面都是三角形的几何体是三棱锥。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:直三棱柱ABC中,,D为AB中点。

(1)求证:
(2)求证:∥平面
(3)求C1到平面A1CD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱锥中, 两两垂直, 且.设是底面内一点,定义,其中分别是三棱锥M-PAB、 三棱锥M-PBC、三棱锥M-PCA的体积.若,且恒成立,则正实数的最小值为_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①如果是两条直线,且//,那么平行于经过的任何平面;
②如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面
③若直线是异面直线,直线是异面直线,则直线也是异面直线;
④已知平面⊥平面,且,若,则⊥平面
⑤已知直线⊥平面,直线在平面内,//,则.
其中正确命题的序号是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,设是三条不同的直线,是两个不同的平面,在下列命题:
①若两两相交,则确定一个平面
②若,且,则
③若,且,则
④若,且,则
其中正确的命题的个数是(   )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,,上一点,且.

(Ⅰ)求证
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

同步练习册答案