精英家教网 > 高中数学 > 题目详情

【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:

年份

1

2

3

4

5

维护费万元

y关于t的线性回归方程;

若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.

参考公式:

【答案】(Ⅰ);(2)甲更有道理.

【解析】

(Ⅰ)分别求出相关系数,求出回归方程即可;(Ⅱ)代入的值,比较函数值的大小,判断即可.

(Ⅰ)

所以回归方程为

(Ⅱ)若满五年换一次设备,则由(Ⅰ)知每年每台设备的平均费用为:

(万元)

若满十年换一次设备,则由(Ⅰ)知每年每台设备的平均费用大概为:

(万元)

所以甲更有道理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求证:

2)若函数的图象与直线没有交点,求实数的取值范围;

3)若函数,则是否存在实数,使得的最小值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=xR).

1)证明:当a3时,fx)在R上是减函数;

2)若函数fx)存在两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)时,求函数的单调区间;

(2)时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若为奇函数,求的值;

(2)试判断内的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数解析式;

(2)判断函数的奇偶性(给出结论即可);

(3)若方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC所对的边分别为abc.向量平行.

1)求A

2)若b2,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明和爸爸妈妈、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小 明的父母至少有一人与小明相邻,则不同的坐法总数为________.

查看答案和解析>>

同步练习册答案