精英家教网 > 高中数学 > 题目详情
15.设a1,a2,…a2014都是正数且a1+a2+…+a2014=1.则$\frac{{{a}_{1}}^{2}}{2+{a}_{1}}$+$\frac{{{a}_{2}}^{2}}{2+{a}_{2}}$+…$\frac{{{a}_{2013}}^{2}}{2+{a}_{2013}}$+$\frac{{{a}_{2014}}^{2}}{2+{a}_{2014}}$的最小值为$\frac{1}{4029}$.

分析 利用柯西不等式的变形:设a1,a2,…an为实数,b1,b2,…bn为正数,则$\frac{{{a}_{1}}^{2}}{{b}_{1}}$+$\frac{{{a}_{2}}^{2}}{{b}_{2}}$+…+$\frac{{{a}_{n}}^{2}}{{b}_{n}}$≥$\frac{({a}_{1}+{a}_{2}+…+{a}_{n})^{2}}{{b}_{1}+{b}_{2}+…+{b}_{n}}$当且仅当$\frac{{a}_{1}}{{b}_{1}}$=$\frac{{a}_{2}}{{b}_{2}}$=…=$\frac{{a}_{n}}{{b}_{n}}$时取等号,计算即得结论.

解答 解:$\frac{{{a}_{1}}^{2}}{2+{a}_{1}}$+$\frac{{{a}_{2}}^{2}}{2+{a}_{2}}$+…$\frac{{{a}_{2013}}^{2}}{2+{a}_{2013}}$+$\frac{{{a}_{2014}}^{2}}{2+{a}_{2014}}$≥$\frac{({a}_{1}+{a}_{2}+…+{a}_{2014})^{2}}{2×2014+({a}_{1}+{a}_{2}+…+{a}_{2014})}$=$\frac{1}{4028+1}$=$\frac{1}{4029}$,
当且仅当$\frac{{a}_{1}}{2+{a}_{1}}$=$\frac{{a}_{2}}{2+{a}_{2}}$=…=$\frac{{a}_{2014}}{2+{a}_{2014}}$取等号,
故答案为:$\frac{1}{4029}$.

点评 本题考查柯西不等式的变形,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若直线y=x+b与曲线x2-4x+y2-6y+9=0(y≤3)有公共点,则b的取值范围是(  )
A.[-1,1+2$\sqrt{2}$]B.[1-2$\sqrt{2}$,1+2$\sqrt{2}$]C.[1-2$\sqrt{2}$,3]D.[1-$\sqrt{2}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知y=f(x)是定义在R上的单调函数,任意实数x1,x2满足x1<x2,λ≠-1,α=$\frac{{x}_{1}+λ{x}_{2}}{1+λ}$,β=$\frac{λ{x}_{1}+{x}_{2}}{1+λ}$,若|f(x1)-f(x2)|<|f(α)-f(β)|恒成立,则有(  )
A.0<λ<1B.λ=0C.λ<0且λ≠-1D.λ≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=x(x-1)(x-2)…(x-n)(n∈N+),求f′(0)及f(n+1)(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)在定义域R上是奇函数,且在(0,+∞)上是减函数,f(2)=0,则函数的零点是-2,0,2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sin(3π+α)=2cos(α-4π),求$\frac{cos(\frac{π}{2}-α)+5sin(\frac{π}{2}+α)}{2cos(π+α)-sin(-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过抛物线y2=2px(p>0)的焦点的一条直线与它交于P,Q两点,过点P和此抛物线顶点的直线与准线交于点M.求证直线MQ平行于此抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某高校专家楼前现有一块矩形草坪ABCD,已知草坪长AB=100米,宽BC=50$\sqrt{3}$米,为了便于专家平时工作、起居,该高校计划在这块草坪内铺设三条小路HE、HF和EF,并要求H是CD的中点,点E在边BC上,点F在边AD上,且∠EHF为直角,如图所示.
(Ⅰ)设∠CHE=x(弧度),试将三条路的全长(即△HEF的周长)L表示成x的函数,并求出此函数的定义域;
(Ⅱ)这三条路,每米铺设预算费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用(结果保留整数)(可能用到的参考值:$\sqrt{3}$取1.732,$\sqrt{2}$取1.414).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z=$\frac{2+i}{i^3}$,z的共轭复数是$\overline{z}$,则$\overline{z}$对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案