【题目】两点到直线的距离都等于,则直线有( )条
A. 1条B. 2条C. 3条D. 4条
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望.
(注:若三个数满足,则称为这三个数的中位数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机将1,2,…,2n(n∈N* , n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1 , 最大数为a2;B组最小数为b1 , 最大数为b2;记ξ=a2﹣a1 , η=b2﹣b1 .
(1)当n=3时,求ξ的分布列和数学期望;
(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C, 表示C的对立事件,判断P(C)和P( )的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆: 的离心率,且椭圆上一点到点的距离的最大值为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设, 为抛物线: 上一动点,过点作抛物线的切线交椭圆于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,且2a5-a3=13,S4=16.
(1)求数列{an}的前n项和Sn;
(2)设Tn=(-1)iai,若对一切正整数n,不等式 λTn<[an+1+(-1)n+1an]·2n-1 恒成立,求实数 λ 的取值范围;
(3)是否存在正整数m,n(n>m>2),使得S2,Sm-S2,Sn-Sm成等比数列?若存在,求出所有的m,n;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆C:(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,|an+1﹣an|=pn , n∈N* .
(1)若{an}是递增数列,且a1 , 2a2 , 3a3成等差数列,求p的值;
(2)若p= ,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由不等式组 确定的平面区域记为Ω1 , 不等式组 确定的平面区域记为Ω2 , 在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com