【题目】函数f(x)= 是定义在区间(﹣1,1)上的奇函数,且f(2)= ,
(1)确定函数f(x)的解析式;
(2)用定义法证明f(x)在区间(﹣1,1)上是增函数;
(3)解不等式f(t﹣1)+f(t)<0.
【答案】
(1)解:∵函数f(x)= 是定义在区间(﹣1,1)上的奇函数,
∴f(﹣x)=﹣f(x),
∴ =﹣ ,
∴b=﹣b,
∴b=0
又∵f(2)= = ,
∴a=1,
∴函数f(x)=
(2)解:证法一:设任意﹣1<x1<x2<1,
∴x1﹣x2<0,1﹣x1x2>0,
∴f(x1)﹣f(x2)= ﹣
=
∴f(x1)<f(x2)
∴f(x)在区间(﹣1,1)上是增函数
证法二:∵函数f(x)= ,
∴f′(x)= ,
当x∈(﹣1,1)时,
f′(x)>0恒成立,
∴f(x)在区间(﹣1,1)上是增函数
(3)解:由题意知f(t﹣1)+f(t)<0
∴f(t﹣1)<﹣f(t)
∴f(t﹣1)<f(﹣t)
∴﹣1<t﹣1<﹣t<1
∴0<t<
【解析】(1)由函数f(x)= 是定义在区间(﹣1,1)上的奇函数,且f(2)= ,求出a,b的值,可得函数f(x)的解析式;(2)证法一:设任意﹣1<x1<x2<1,求出f(x1)﹣f(x2),并判断符号,进而根据函数单调性的定义得到f(x)在区间(﹣1,1)上是增函数;证法二:求导,并分析出当x∈(﹣1,1)时,f′(x)>0恒成立,进而得到f(x)在区间(﹣1,1)上是增函数(3)不等式f(t﹣1)+f(t)<0可化为:﹣1<t﹣1<﹣t<1,解得答案.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对利用导数研究函数的单调性的理解,了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】对于函数、、,如果存在实数使得,那么称为、的生成函数.
(1) 下面给出两组函数, 是否分别为、的生成函数?并说明理由;
第一组: , ,
第二组: , , ;
(2) 设, , ,生成函数.若不等式在上有解,求实数的取值范围;
(3) 设, ,取,生成函数图像的最低点坐标为.若对于任意正实数,且,试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1的离心率为 ,焦距为2,右焦点为F,过点F的直线交椭圆于A、B两点.
(1)求椭圆C的方程;
(2)在x轴上是否存在定点M,使得 为定值?若存在,求出定值和定点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是二次函数,顶点为(﹣1,﹣4),且与x轴的交点为(1,0).
(1)求出f(x)的解析式;
(2)求y=f(x)在区间[﹣2,2]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mx﹣1 , g(x)=﹣1+logmx(m>0,m≠1),有如下两个命题:
p:f(x)的定义域和g[f(x)]的值域相等.
q:g(x)的定义域和f[g(x)]的值域相等.
则( )
A.命题p,q都正确
B.命题p正确,命题q不正确
C.命题p,q都不正确
D.命题q不正确,命题p正确
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
(1)若x∈[0,m],证明:f(x)≤ ;
(2)求|f(x)|在[﹣1,1]上的最大值g(m).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com