精英家教网 > 高中数学 > 题目详情
设F1、F2分别是椭圆E:x2+
y2
b2
=1(0<b<1)
的左、右焦点,过F1的直线?与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|的长为(  )
分析:利用等差数列的性质,结合椭圆的定义,即可求得|AB|.
解答:解:∵|AF2|,|AB|,|BF2|成等差数列,
∴|AF2|+|BF2|=2|AB|,
∵|AF2|+|AB|+|BF2|=4a=4
∴3|AB|=4
∴|AB|=
4
3

故选C.
点评:本题考查椭圆的定义,考查等差数列的性质,考查计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,过F1斜率为1的直线?与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;
(2)设点P(0,-1)满足|PA|=|PB|,求E的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆E:x2+
y2b2
=1(0<b<1)的左、右焦点,过F1的直线与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列
(Ⅰ)求△ABF2的周长;
(Ⅱ)求|AB|的长;
(Ⅲ)若直线的斜率为1,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆E:x2+
y2
b2
=1(0<b<1)
的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|的长为
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆E:
x2
a2
+
y2
b2
=1
,(a>b>0)的左、右焦点,P是该椭圆上一个动点,且|PF1|+|PF2|=8,|F1F2|=4
3

(1)求椭圆E的方程;
(2)求出以点M(1,1)为中点的弦所在的直线方程.

查看答案和解析>>

同步练习册答案