精英家教网 > 高中数学 > 题目详情
10.设A为4×3阶矩阵,且r(A)=2,而B=$[\begin{array}{l}{1}&{0}&{2}\\{0}&{2}&{0}\\{-1}&{0}&{3}\end{array}]$,则r(AB)=2.

分析 由已知得B为可逆矩阵,即B为满秩矩阵.当一个矩阵与一个满秩矩阵相乘时,所得的矩阵的秩与原矩阵相等.

解答 解:∵B=$[\begin{array}{l}{1}&{0}&{2}\\{0}&{2}&{0}\\{-1}&{0}&{3}\end{array}]$,
∴|B|=$[\begin{array}{l}{1}&{0}&{2}\\{0}&{2}&{0}\\{-1}&{0}&{3}\end{array}]$=6+4=10≠0,
∴B=$[\begin{array}{l}{1}&{0}&{2}\\{0}&{2}&{0}\\{-1}&{0}&{3}\end{array}]$是满秩矩阵,
∵A为4×3阶矩阵,且r(A)=2,
∴r(AB)=2.

点评 本题考查AB的秩的求法,是基础题,解题时要认真审题,解题时要注意矩阵的秩的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在四棱锥P-ABCD中,PD⊥底面ABCD,四边形ABCD为正方形,且PD=AB=1,$\overrightarrow{BG}$=$\frac{1}{3}$$\overrightarrow{BD}$,则$\overrightarrow{PG}$与底面ABCD的夹角的正弦值为(  )
A.$\frac{2\sqrt{34}}{17}$B.$\frac{3\sqrt{17}}{17}$C.-$\frac{2\sqrt{34}}{17}$D.-$\frac{3\sqrt{17}}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a=i+i2+…+i2013(i是虚数单位),则$\frac{a(1+a)^{2}}{1-a}$的值为(  )
A.iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x1、x2是函数f(x)=x2-mx+2lnx+4的两个极值点,a、b、c是函数f(x)的零点,x1、a、x2成等比数列.
(Ⅰ)求实数m的值;
(Ⅱ)求证:a>bc(参考数据:ln3=1.1);
(Ⅲ)关于x的不等式kx2-2(1-bc-k)lnx-k≥0恒成立,试用bc表示实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥CD,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)求证:B1C1⊥CE
(2)求点C到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0),离心率为$\frac{{\sqrt{2}}}{2}$,且过点A(-1,0).
(Ⅰ)求椭圆E的方程.
(Ⅱ)若椭圆E的任意两条互相垂直的切线相交于点P,证明:点P在一个定圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.正六棱锥的底面周长为6,高为$\sqrt{3}$,那么它的侧棱长是2,斜高是$\frac{\sqrt{15}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的个数有(  )个.
(1)若α,β垂直于同一平面,则α与β平行;
(2)“如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β”的逆否命题为真命题;
(3)“若m>2,则方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}$=1表示双曲线”的否命题为真命题;
(4)“a=1”是“直线l1:ax+2y=0与直线l2:x+(a+1)y+4=0平行”的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为$\sqrt{2}-1$,求椭圆的方程$\frac{x^2}{2}+{y^2}=1或\frac{y^2}{2}+{x^2}=1$.

查看答案和解析>>

同步练习册答案