精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.

【答案】(I);(II)为定值.

【解析】试题分析:

(1)利用题意求得,则椭圆的方程为

(2)设出直线的 斜率,联立直线与椭圆的方程可得直线的斜率为定值.

试题解析:

解法一:(Ⅰ)因为的面积是的面积的3倍,

所以,即,所以,所以

则椭圆的方程为

(Ⅱ)当,则

设直线的斜率为,则直线的斜率为

不妨设点轴上方,,设

的直线方程为,代入中整理得

同理

所以

因此直线的斜率是定值

解法二:(Ⅰ)同解法一.

(Ⅱ)依题意知直线的斜率存在,所以设方程:代入中整理得

,设

所以

,则,不妨设点轴上方,

所以,整理得

所以

整理得

,所以

时,直线过定点,不合题意;

时,,符合题意,

所以直线的斜率是定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的反函数为

(1)求的解析式,并指出的定义域;

(2)判断的奇偶性,并说明理由;

(3)设,解关于的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全体组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题、代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如下表:(单位:人)

立体几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?

(2)经统计得,选择做立体几何题的学生正答率为,且答对的学生中男生人数是女生人数的5倍,现从选择做立体几何题且答错的学生中任意抽取两人对他们的答题情况进行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的二次函数f(x)=x2+(2t-1)x+1-2t.

(1)求证:对于任意t∈R,方程f(x)=1必有实数根;

(2)若<t<,求证:方程f(x)=0在区间(-1,0)及内各有一个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,点为其上一点,且

(1)求的值;

(2)如图,过点作直线交抛物线于两点,求直线的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱中,,点的中点,点在线段上.

)当时,求证

)是否存在点,使二面角等于60°?若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品展开促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示转盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有4个白球,4个红球和4个篮球的盒子中一次性摸出3球(这些球初颜色外完全相同),如果摸到的是3个不同颜色的球,即为中奖.

(Ⅰ)试问:购买该商品的顾客在哪家商场中奖的可能性大?说明理由;

(Ⅱ)记在乙商场购买该商品的顾客摸到篮球的个数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},:(1)AB;(2)AB;(3)A∪(UB);(4)B∩(UA);(5)(UA)∩(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣(a∈R)

(Ⅰ)判断函数f(x)在R上的单调性,并用单调函数的定义证明;

(Ⅱ)是否存在实数a使函数f(x)为奇函数?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案