精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
b•2x+12x+1+a
是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)解关于t不等式f(k•t2-t)+f(1-k•t)<0.
分析:(Ⅰ)由定义域为R的函数f(x)是奇函数,利用f(0)=0,f(-x)=-f(x)即可求出a、b的值.
(Ⅱ)利用函数f(x)奇偶性和单调性,将f(k•t2-t)+f(1-k•t)<0
化为kt2-(1+k)t+1>0.再对k讨论即可.
解答:解:(Ⅰ)∵定义域为R的函数f(x)是奇函数,
∴f(0)=0,f(-x)=-f(x).
由f(0)=0,得b+1=0,∴b=-1,∴f(x)=
-2x+1
2x+1+a

由f(-x)=-f(x),得
-2-x+1
2-x+1+a
=-
-2x+1
2x+1+a
,解得a=2.
∴a=2,b=-1.
(Ⅱ)由(Ⅰ)可知f(x)=
1
2x+1
-
1
2

∵y=2x是R上的增函数,∴y=
1
2x+1
是R上的减函数,
∴函数f(x)是R上的减函数.
∵f(k•t2-t)+f(1-k•t)<0,
∴f(kt2-t)<-f(1-kt),
由函数f(x)是R上的奇函数得f(kt2-t)<f(kt-1),
由函数f(x)是R上的减函数得kt2-t>kt-1,即kt2-(1+k)t+1>0.(⊕)
①若k=0时,则上述不等式变为-t+1>0,解得t<1,即其解集为{t|t<1}.
②当k≠0时,△=(1+k)2-4k=(k-1)2≥0.
方程kt2-(1+k)t+1=0的根为x1,2=
(1+k)±(k-1)
2k
,即x1=1,x2=
1
k

当k=1时,(⊕)变为t2-2t+1>0,∴(t-1)2>0,即t≠1,即(⊕)的解集为{t|t≠1}.
当k>1时,
1
k
<1
,解得(⊕)的解集为{t|t<
1
k
,或t>1};
当0<k<1时,
1
k
>1
,解得(⊕)的解集为{t|t>
1
k
,或t<1};
当k<0时,
1
k
<1
,解得(⊕)的解集为{t|
1
k
t<1}.
点评:本题考查了函数的奇偶性、单调性及解不等式,对k分类讨论是解决此题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案