精英家教网 > 高中数学 > 题目详情

【题目】关于函数,给出下列命题:

若函数f(x)是R上周期为3的偶函数,且满足f(1)=1,则f(2)-f(-4)=0;

若函数f(x)满足f(x+1)f(x)=2 017,则f(x)是周期函数;

若函数g(x)=是偶函数,则f(x)=x+1;

函数y=的定义域为.

其中正确的命题是________.(写出所有正确命题的序号)

【答案】①②

【解析】因为f(x+3)=f(x)且f(-x)=f(x),所以f(2)=f(-1+3)=f(-1)=f(1)=1,f(-4)=f(-1)=f(1)=1,故f(2)-f(-4)=0,正确.

因为f(x+1)f(x)=2 017,所以f(x+1)=,f(x+2)==f(x).所以f(x)是周期为2的周期函数,正确.

令x<0,则-x>0,g(-x)=-x-1.又g(x)为偶函数,所以g(x)=g(-x)=-x-1.即f(x)=-x-1,不正确.

要使函数有意义,需满足

即0<|2x-3|≤1,

所以1≤x≤2且x≠,即函数的定义域为不正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

)当时,求函数上的最大值和最小值;

)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三次函数

(1)若函数过点且在点处的切线方程是,求函数的解析式;

(2)在(1)的条件下,若对于区间上任意两个自变量的值

都有,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是上、下底边长为2和6,高为的等腰梯形,将它沿对称轴折叠,使二面角为直二面角.

(1)证明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

1)当时,解不等式

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为线段上一点,的中点.

(1)证明:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)是奇函数,且满足f(x)=f(x+3),f(-2)=-3.若数列{an}中,a1=-1,且前n项和Sn满足=2×+1,则f(a5)+f(a6)=________.

查看答案和解析>>

同步练习册答案