精英家教网 > 高中数学 > 题目详情
20.若正数x,y满足$\frac{1}{x}$+$\frac{3}{y}$=5,则4x+3y的最小值是(  )
A.2B.3C.4D.5

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵正数x,y满足$\frac{1}{x}$+$\frac{3}{y}$=5,
则4x+3y=$\frac{1}{5}$$(\frac{1}{x}+\frac{3}{y})$(4x+3y)=$\frac{1}{5}$$(13+\frac{12x}{y}+\frac{3y}{x})$≥$\frac{1}{5}$$(13+3×2\sqrt{\frac{4x}{y}•\frac{y}{x}})$=5,当且仅当y=2x=1时取等号.
∴4x+3y的最小值是5.
故选:D.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点A是以F1F2为直径的圆与双曲线在第一象限的交点,延长AF2与双曲线交于点B,若|BF2|=3|AF2|,则此双曲线的离心率为(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{10}}{3}$C.$\sqrt{10}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某高科技公司对某种新研制的产品进行售后调查,对其50天内的日销售量(单位:吨)进行统计,结果如下:
已知每天的销售量相互独立.
日销售量11.52
天数102515
(1)求5天中该种商品恰好有三天的销售量不为1.5吨的概率;
(2)已知每吨该商品的销售利润为2千元,X表示该种商品某两天销售利润的和(单位:千元),若某两天的利润和超过这50天的利润的数学期望,则称这两天为“黄金双天”.若某两天的利润和为6.4千元,试判断该两天是不是“黄金双天”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若(2+x)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a9=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x,y均为正实数,且x+3y=2,则$\frac{2x+y}{xy}$的最小值为$\frac{1}{2}(7+2\sqrt{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(sinx)=π(x∈R),则f(cosx)=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x+2)2|x-a|-4(x∈R)
(1)当a=1时,求函数f(x)的极值点;
(2)若函数f(x)在区间[-2,1]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设定义在区间(-b,b)上的函数f(x)=lg$\frac{1+ax}{1-ax}$是奇函数(a,b∈R且a≠-2),则ab的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:
(1)($\frac{1}{2}$)-2-4sin30°+(-1)2011+(π-2)0
(2)($\frac{3}{a+1}$-$\frac{a-3}{{a}^{2}-1}$)÷$\frac{a}{a-1}$.

查看答案和解析>>

同步练习册答案