精英家教网 > 高中数学 > 题目详情
13.在Rt△ABC中,AB=AC=1,若一个椭圆经过A、B两点,它的一个焦点为点C,另一个焦点在边AB上,则这个椭圆的离心率为(  )
A.$\frac{{2\sqrt{3}-\sqrt{6}}}{2}$B.$\sqrt{2}-1$C.$\frac{{\sqrt{6}-\sqrt{3}}}{2}$D.$\sqrt{6}-\sqrt{3}$

分析 设另一焦点为D,则可再Rt△ABC中,根据勾股定理求得BC,进而根据椭圆的定义知AC+AB+BC=4a求得a.再利用AC+AD=2a求得AD最后在Rt△ACD中根据勾股定理求得CD,得到椭圆半焦距,进一步求得离心率.

解答 解:设另一焦点为D,
∵Rt△ABC中,AB=AC=1,
∴BC=$\sqrt{2}$,
∵AC+AD=2a,
∴AC+AB+BC=1+1+$\sqrt{2}$=4a,
∴a=$\frac{2+\sqrt{2}}{4}$,
又∵AC=1,∴AD=$\frac{\sqrt{2}}{2}$.
在Rt△ACD中焦距CD=$\sqrt{A{C}^{2}+A{D}^{2}}=\frac{\sqrt{6}}{2}$,
则c=$\frac{\sqrt{6}}{4}$,
∴$e=\frac{c}{a}=\frac{\frac{\sqrt{6}}{4}}{\frac{2+\sqrt{2}}{4}}=\frac{\sqrt{6}}{2+\sqrt{2}}=\sqrt{6}-\sqrt{3}$.
故选:D.

点评 本题主要考查了椭圆的简单性质和解三角形的应用.要理解好椭圆的定义和椭圆中短轴,长轴和焦距的关系是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数y=$\frac{1+x}{1-x}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足$\left\{\begin{array}{l}2x-y≤0\\ x+y≤3\\ x≥0\end{array}\right.$则y-x的最大值为(  )
A.0B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上任意一点P,作与y轴平行的直线,交两渐近线于A,B两点,若$\overrightarrow{PA}•\overrightarrow{PB}=-\frac{a^2}{4}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$满足$f(x+\frac{π}{2})=-f(x)$,若其图象向左平移$\frac{π}{6}$个单位后得到的函数为奇函数.
(1)求f(x)的解析式;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-a)cosB=bcosA,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PA丄平面ABCD,AB丄BC,∠BCA=45°,PA=AD=2,AC=1,DC=$\sqrt{5}$
(Ⅰ) 证明PC丄AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.射线OA绕端点O逆时针旋转120°到达OB的位置,再顺时针旋转270°到达OC的位置,则∠AOC=(  )
A.150°B.-150°C.390°D.-390°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x∈R,则“x>-1”是“x3>-1”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow a=({1,1})$,向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,$\overrightarrow a•\overrightarrow b=\sqrt{2}$,则$|{\overrightarrow b}|$等于2.

查看答案和解析>>

同步练习册答案