精英家教网 > 高中数学 > 题目详情
9.半径为1的圆O内切于正方形ABCD,正六边形EFGHPR内接于圆O,当EFGHPR绕圆心O旋转时,$\overrightarrow{AE}$•$\overrightarrow{OF}$的取值范围是(  )
A.[1-$\sqrt{2}$,1+$\sqrt{2}$]B.[-1$-\sqrt{2}$,-1+$\sqrt{2}$]C.[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$$+\sqrt{2}$]D.[$-\frac{1}{2}$-$\sqrt{2}$,$-\frac{1}{2}$+$\sqrt{2}$]

分析 法一、以O为圆心,建立如图所示的直角坐标系,可得A(-1,-1),设OE与Ox的反向延长线成θ角,即有E(-cosθ,-sinθ),F(-cos(θ+$\frac{π}{3}$),-sin(θ+$\frac{π}{3}$)),0≤θ<2π,运用向量的坐标和向量的数量积的坐标表示,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到所求范围.
法二、运用向量的加法和数量积的定义,结合余弦函数的值域,即可得到所求范围.

解答 解法一:以O为圆心,建立如图所示的直角坐标系,
可得A(-1,-1),
设OE与Ox的反向延长线成θ角,
即有E(-cosθ,-sinθ),F(-cos(θ+$\frac{π}{3}$),-sin(θ+$\frac{π}{3}$)),
0≤θ<2π,
则$\overrightarrow{AE}$•$\overrightarrow{OF}$=(1-cosθ,1-sinθ)•(-cos(θ+$\frac{π}{3}$),-sin(θ+$\frac{π}{3}$))
=cosθcos(θ+$\frac{π}{3}$)+sinθsin(θ+$\frac{π}{3}$)-(cos(θ+$\frac{π}{3}$)+sin(θ+$\frac{π}{3}$))
=cos$\frac{π}{3}$-$\sqrt{2}$sin(θ+$\frac{7π}{12}$)=$\frac{1}{2}$-$\sqrt{2}$sin(θ+$\frac{7π}{12}$),
当sin(θ+$\frac{7π}{12}$)=1,即θ=$\frac{23π}{12}$时,取得最小值$\frac{1}{2}$-$\sqrt{2}$;
当sin(θ+$\frac{7π}{12}$)=-1,即θ=$\frac{11π}{12}$时,取得最大值$\frac{1}{2}$+$\sqrt{2}$.
即有$\overrightarrow{AE}$•$\overrightarrow{OF}$的取值范围是[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$+$\sqrt{2}$].
法二、$\overrightarrow{AE}$=$\overrightarrow{AO}$+$\overrightarrow{OE}$,
$\overrightarrow{AE}$•$\overrightarrow{OF}$=($\overrightarrow{AO}$+$\overrightarrow{OE}$)•$\overrightarrow{OF}$=$\overrightarrow{AO}$•$\overrightarrow{OF}$+$\overrightarrow{OE}$•$\overrightarrow{OF}$,
而$\overrightarrow{OE}$•$\overrightarrow{OF}$=$\frac{1}{2}$,$\overrightarrow{AO}$•$\overrightarrow{OF}$=|$\overrightarrow{AO}$|•|$\overrightarrow{OF}$|cosθ=$\sqrt{2}$cosθ,
则$\overrightarrow{AE}$•$\overrightarrow{OF}$的取值范围是[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$+$\sqrt{2}$].
故选:C.

点评 本题考查向量的数量积的范围,考查坐标法的运用,同时考查三角函数的化简和求值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数y=$\sqrt{ln\sqrt{2x-1}}$+$\frac{1}{2+x}$的定义域是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正项数列{an}的前n项和为Sn,若4S2n-2=a2n+$\frac{1}{{{a}^{2}}_{n}}$(n∈N*),则S2014=(  )
A.2015+$\frac{\sqrt{2015}}{2015}$B.2015-$\frac{\sqrt{2015}}{2015}$C.2015D.$\sqrt{2014}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.将函数y=f(x)图象上每一点的横坐标伸长到原来的2倍,再向左平移$\frac{π}{2}$个单位长度,得到函数y=$\frac{1}{2}$sinx的图象,试求函数y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知方程$\frac{{x}^{2}}{k-1}$-$\frac{{y}^{2}}{|k|}$=-1表示双曲线,则实数k的取值范围为(  )
A.(-∞,0)∪(0,1)∪(1,+∞)B.(1,+∞)C.(0,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.根据下列条件写出直线的方程:
(1)经过点A(一1,2),且与直线2x+4y+1=0平行;
(2)经过点B(4,1),且与直线x+2y+3=0垂直;
(3)经过点C(1,3),且垂直于过点M(1,2)和点N(一2,一3)的直线;
(4)经过点D(1,2),且平行于x轴;
(5)经过点E(4,3),且垂直于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.cos(α+β)=cosαcosβ-sinαsinβ(C(α+β)
sin(α+β)=sinαcosβ+cosαsinβ(S(α+β)
sin(α-β)=sinαcosβ-cosαsinβ(S(α-β)
tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$(T(α+β)
tan(α-β)=$\frac{tanα-tanβ}{1+tanαtanβ}$(T(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点M($\sqrt{2}$,-$\sqrt{3}$),N(-$\sqrt{3}$,$\sqrt{2}$)则直线MN的倾斜角为(  )
A.45°B.135°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,B1C1的中点,BC=CA=CC1,求BM与AN所成的角的余弦值.

查看答案和解析>>

同步练习册答案