【题目】如图所示,已知四边形是菱形,平面平面,,.
(1)求证:平面平面.
(2)若,求二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)由面面垂直的性质定理可得平面,再由面面垂直的判定定理得平面平面;
(2)设与交于点O,连接,可证平面.以O为坐标原点,以,,所在直线分别为x轴、y轴、z轴建立空间直角坐标系,求出平面和平面的法向量,即求二面角的余弦值.
(1)证明:菱形中,,
又平面平面,平面平面,
平面.又平面,
平面平面.
(2)设与交于点O,连接,因为,且,
四边形是平行四边形,.
,,
又平面平面,平面平面,平面,
平面.
以O为坐标原点,以,,所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示
则,,,,
,.
设平面的法向量为,
则,即,令,则,
.
又平面的法向量为.
设二面角的大小为,则为锐角.
,
二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形中,AB∥CD,,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.
(Ⅰ)求证:BC⊥平面DBE;
(Ⅱ)求点D到平面BEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为,直线l的参数方程为,(t为参数).
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,,且,求值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递网点收取快递费用的标准是重量不超过的包裹收费10元,重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).
(1)求这60天每天包裹数量的平均数和中位数;
(2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中一定正确的是( )
(注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生).
A.互联网行业从业人员中80前占3%以上
B.互联网行业90后中,从事设计岗位的人数比从事市场岗位的人数要多
C.互联网行业中从事技术岗位的人数超过总人数的20%
D.互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(I)求出的值;
(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点是抛物线的焦点,、是上两点.若,且线段的中点到轴的距离等于.
(1)求的值;
(2)设直线与交于、两点且在轴的截距为负,过作的垂线,垂足为,若.
(i)证明:直线恒过定点,并求出该定点的坐标;
(ii)求点的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com