精英家教网 > 高中数学 > 题目详情

【题目】2019新型冠状病毒感染的肺炎的传播有飞沫、气溶胶、接触等途径,为了有效抗击疫情,隔离性防护是一项具体有效措施.某市为有效防护疫情,宣传居民尽可能不外出,鼓励居民的生活必需品可在网上下单,商品由快递业务公司统一配送(配送费由政府补贴).快递业务主要由甲公司与乙公司两家快递公司承接:“快递员”的工资是“底薪+送件提成”.这两家公司对“快递员”的日工资方案为:甲公司规定快递员每天底薪为70元,每送件一次提成1元;乙公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成5元,假设同一公司的快递员每天送件数相同,现从这两家公司往年忙季各随机抽取一名快递员并调取其100天的送件数,得到如下条形图:

1)求乙公司的快递员一日工资y(单位:元)与送件数n的函数关系;

2)若将频率视为概率,回答下列问题:

①记甲公司的“快递员”日工资为X(单位:元).求X的分布列和数学期望;

②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.

【答案】1;(2)①分布列详见解析,数学期望为156.8元;②小王应当到甲公司应聘“快递员”的工作,理由详见解析.

【解析】

(1)根据题意分两段求出一日工资y(单位:元)与送件数n的函数关系即可.

(2)①根据送件数以及(1)中的函数可知X的所有可能取值为152,154,156,158,160.在结合图中各送件数的频数求出对应的频率,继而求得分布列与数学期望即可.

②分别求出两家公司送餐日工资的数学期望,比较大小再判定即可.

1)由题意:当时,元;

时,.

∴乙公司的快递员一日工资y(单位:元)与送件数n的函数关系为:

2)①X的所有可能取值为152,154,156,158,160.

由题可知,,

,,,

X的分布列为:

X

152

154

156

158

160

P

0.1

0.2

0.1

0.4

0.2

X的数学期望(元)

②设乙公司的日工资为Y,

(元)

由于到甲公司的日工资的数学期望(均值)比乙公司的日工资的数学期望(均值)高,

所以小王应当到甲公司应聘“快递员”的工作.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和,数列满足.

1)证明:是等比数列,并求

2)若数列中去掉与数列中相同的项后,余下的项按原顺序排列成数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}的前n项和为SnS315a1a4a13成等比数列.

1)求数列{an}的通项公式;

2)求数列的前n项和Tn大于2020的最小自然数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,选择的两个非空子集,要使中最小数大于中最大的数,则不同选择方法有(

A.50B.49C.48D.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调查.经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示.

1)估计该社区居民最近一年来网购消费金额的中位数;

2)将网购消费金额在20千元以上者称为网购迷,补全下面的列联表,并判断有多大把握认为网购迷与性别有关系

总计

网购迷

20

非网购迷

45

总计

100

附:

临界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】笔、墨、纸、砚是中国独有的文书工具,即文房四宝.笔、墨、纸、砚之名,起源于南北朝时期,其中的指的是宣纸,宣纸始于唐代,产于泾县,而唐代泾县隶属于宣州府管辖,故因地而得名宣纸,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀,公司按照某种质量标准值x给宣纸确定质量等级,如表所示:

x

4852]

4448]∪(5256]

044]∪(56100]

质量等级

正牌

副牌

废品

公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.

(Ⅰ)按正牌、副牌、废品进行分层抽样,从这一刀(100张)纸中抽出一个容量为5的样本,再从这个样本中随机抽出两张,求其中无废品的概率;

(Ⅱ)试估计该公司生产宣纸的年利润(单位:万元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDHKLE中,底面ABCD是边长为3的正方形,对角线ACBD相交于点O,点F在线段AH上且BE与底面ABCD所成角为.

1)求证:ACBE

2M为线段BD上一点,且,求异面直线AMBF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量(cosxsinx)(cosx,﹣sinx),函数

1)若x(0),求tan(x)的值;

2)若()(0),求的值.

查看答案和解析>>

同步练习册答案