精英家教网 > 高中数学 > 题目详情

【题目】(1)已知不等式 解集为,求不等式的解集。 (2)若不等式对任意均成立,求实数a的取值范围.

【答案】(1) (1,2).

(2).

【解析】分析:(1)先根据不等式解集与对应方程根的关系得-1,2是方程ax2+bx+2=0的两根,且,再根据韦达定理求a,b,最后解不等式得结果,(2)先化简不等式,再根据二次项系数是否为零讨论,最后结合二次函数图像确定恒成立条件,解得实数a的取值范围.

详解:(1)由题意知:-1,2是方程ax2+bx+2=0的两根,且

由根与系数的关系,得

解得a=-1,b=1,

代入不等式可得:

解得1<x<2 不等式解集为(1,2)

(2)原不等式可化为

显然a=1时不等式化成符合 题意,

所以要使不等式对于任意的x均成立,必须有

解得

综上所述 实数a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0 , y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣ 时,切线MA的斜率为﹣

(1)求P的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的是__________

①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;

②在吸烟与患肺病这两个分类变量的独立性检验中,“有99%的把握认为吸烟与患肺病有关”的含义是“若某人吸烟,则他有99%的可能患肺病;”

③已知“”为真命题,则“”、“”、“”中至少有一个真命题;

④以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数满足,且, ,则函数的零点个数是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,过椭圆M: (a>b>0)右焦点的直线x+y﹣ =0交M于A,B两点,P为AB的中点,且OP的斜率为
(1)求M的方程
(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x>0}, ,则(
A.A∩B=
B.A∪B=R
C.BA
D.AB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.

(1)证明AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足,且.

(1)求数列的通项公式;

(2)求证:数列是等差数列,求数列的通项公式;

(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.

查看答案和解析>>

同步练习册答案