精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N.
(I)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(I)的结论下,设bn=log3an+1,Tn是数列
1bnbn+1
的前n项和,求T2012的值.
分析:(I)利用an=Sn-Sn-1(n≥2)可得an+1=3an,要使得当n≥1时,{an}是等比数列,则只需
a2
a1
=
2t
t
=3
可求t
(II)由(I)可求bn,结合数列的特点,考虑利用裂项相消可求数列的和
解答:解:(I)由题意可得,an+1=2Sn+1,an=2Sn-1+1(n≥2)
两式相减可得,an+1-an=2an即an+1=3an
∴当n≥2时,{an}是等比数列
要使得当n≥1时,{an}是等比数列,则只需
a2
a1
=
2t
t
=3

∴t=1
(II)由(I)可得an=3n-1,bn=log3an+1=n
1
bnbn+1
=
1
(n+1)n
=
1
n
-
1
n+1

T2012=1-
1
2
+
1
2
-
1
3
+…+
1
2012
-
1
2013
=1-
1
2013
=
2012
2013
点评:本题主要考查了等比数列的定义的应用,数列的递推公式an=Sn-Sn-1(n≥2)的应用,数列的裂项相消法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项an=
1
pn-q
,实数p,q满足p>q>0且p>1,sn为数列{an}的前n项和.
(1)求证:当n≥2时,pan<an-1
(2)求证sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求证sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:
1
2
1
3
2
3
1
4
2
4
3
4
1
5
2
5
3
5
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下运算和结论:
①a24=
3
8

②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;
③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=
n2+n
4

④若存在正整数k,使Sk<10,Sk+1≥10,则ak=
5
7

其中正确的结论是
①③④
①③④
.(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若数列{an}的前n项和Sn=2n+1,则数列{an}为等比数列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是

查看答案和解析>>

同步练习册答案