精英家教网 > 高中数学 > 题目详情
1.已知抛物线C:y=$\frac{1}{4}$x2的焦点为F,点P为抛物线C上一个动点,过点P且与抛物线C相切的直线记为l.
(1)求F的坐标;
(2)当点P在何处时,点F到直线L的距离最小?

分析 (1)把抛物线方程整理成标准方程,进而可得焦点的坐标.
(2)设P(x0,y0)则y0=$\frac{1}{4}$x02,根据y′=$\frac{1}{2}$x,判断在P点处抛物线(二次函数)的切线的斜率k=$\frac{1}{2}$x0,进而可得切线方程和焦点F到切线L的距离,最后判断当且仅当x0=0时上式取“=”此时P的坐标是(0,0).

解答 解:(1)抛物线方程为x2=4y,故焦点F的坐标为(0,1).
(2)设P(x0,y0)则y0=$\frac{1}{4}$x02
对x2=4y进行求导得
y′=$\frac{1}{2}$x,
∴在P点处抛物线(二次函数)的切线的斜率k=$\frac{1}{2}$x0
∴切线L的方程是:y-y0=k(x-x0),即$\frac{1}{2}$x0x-y-$\frac{1}{4}$x02=0
∴焦点F到切线L的距离d=$\frac{\frac{1}{4}{x}_{0}^{2}+1}{\sqrt{\frac{1}{4}{x}_{0}^{2}+1}}$=$\sqrt{\frac{1}{4}{x}_{0}^{2}+1}$≥1,
当且仅当x0=0时上式取“=”此时P的坐标是(0,0)
∴当P在(0,0)处时,焦点F到切线L的距离最小

点评 本题主要考查了抛物线的应用及抛物线与直线的关系.考查了学生综合分析和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.a=tan(cos(-1))与b=cos(tan(-1))的大小关系为(  )
A.a>bB.a<bC.a=bD.均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.y=2sin($\frac{x}{2}$+$\frac{π}{3}$)的值域为[-2,2],当y取最大值时,x=4kπ+$\frac{π}{3}$(k∈Z);当y取最小值时,x=4kπ-$\frac{5π}{3}$(k∈Z),周期为4π,单调递增区间为[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$](k∈Z);单调递减区间为[4kπ+$\frac{π}{3}$,4kπ+$\frac{7π}{3}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=5,a2=2,且2(an+an+2)=5an+1,则数列{an}的前n项之和为11-$\frac{1}{3}$(25-n+2n).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,P为椭圆C上任意一点.
(1)当PF1⊥PF2时,PF1=$\sqrt{2}$,且PF2所在的弦|PQ|=$\frac{4\sqrt{2}}{3}$,求椭圆C的方程.
(2)若EF为圆N:x2+(y-2)2=1的任意一条直径,请求$\overrightarrow{PE}$•$\overrightarrow{PF}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知在△ABC中,tan$\frac{A}{2}$=$\frac{1}{2}$,tan$\frac{B}{2}$=$\frac{1}{3}$,△ABC的形状为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断下列函数的奇偶性.
(1)f(x)=cos($\frac{π}{2}$+2x)cos(π+x).
(2)f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$.
(3)f(x)=$\frac{{e}^{sinx}+{e}^{-sinx}}{{e}^{sinx}-{e}^{-sinx}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=2,则sinαcosα+2sin2α的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a>b>c,a+b+c=0,求证:$\frac{c}{a-c}$>$\frac{c}{b-c}$.

查看答案和解析>>

同步练习册答案