分析 通过当n≥3时,利用$\frac{1}{{2}^{n}-1}$<$\frac{1}{6×{2}^{n-3}}$放缩、计算即得结论.
解答 证明:记an=$\frac{1}{{2}^{n}-1}$,则当n≥3时,an<$\frac{1}{6×{2}^{n-3}}$,
∴$\frac{1}{2-1}$+$\frac{1}{{2}^{2}-1}$+…+$\frac{1}{{2}^{n}-1}$<1+$\frac{1}{3}$+$\frac{1}{6}$+$\frac{1}{12}$+…+$\frac{1}{6×{2}^{n-3}}$
=$\frac{4}{3}$+$\frac{\frac{1}{6}(1-\frac{1}{{2}^{n-2}})}{1-\frac{1}{2}}$
=$\frac{4}{3}$+$\frac{1}{3}$(1-$\frac{1}{{2}^{n-2}}$)
<$\frac{5}{3}$,
即$\frac{1}{2-1}+\frac{1}{{2}^{2}-1}+…+\frac{1}{{2}^{n}-1}<\frac{5}{3}(n∈{N}^{*})$.
点评 本题考查不等式的证明,利用放缩法是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com