精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两位同学进入新华书店购买数学课外阅读书籍,经过筛选后,他们都对三种书籍有购买意向,已知甲同学购买书籍的概率分别为,乙同学购买书籍的概率分别为,假设甲、乙是否购买三种书籍相互独立.

1)求甲同学购买3种书籍的概率;

2)设甲、乙同学购买2种书籍的人数为,求的概率分布列和数学期望.

【答案】(1);(2)分布列见解析,.

【解析】

1)这是相互独立事件,所以甲购买书籍的概率直接相乘即可.(2)基本事件为甲购买两本书和乙购买两本书的概率,所以先求出基本事件的概率,然后再求分布列.

(1)记“甲同学购买3种书籍”为事件A,则.

答:甲同学购买3种书籍的概率为.

(2)设甲、乙同学购买2种书籍的概率分别为.

所以,所以.

.

所以X的概率分布为

X

0

1

2

P

.

答:所求数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分分)

已知圆,过点作直线交圆两点.

)当经过圆心时,求直线的方程.

)当直线的倾斜角为时,求弦的长.

)求直线被圆截得的弦长时,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于四棱柱的说法:

①四条侧棱互相平行且相等;

②两对相对的侧面互相平行;

③侧棱必与底面垂直;    

④侧面垂直于底面.

其中正确结论的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若对任意,存在,,则实数的取值范围为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣1+ (a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学兴趣小组为了研究人的脚的大小与身高的关系,随机抽测了20位同学,得到如下数据:

序号

1

2

3

4

5

6

7

8

9

10

身高(厘米)

192

164

172

177

176

159

171

166

182

166

脚长(码)

48

38

40

43

44

37

40

39

46

39

序号

11

12

13

14

15

16

17

18

19

20

身高(厘米)

169

178

167

174

168

179

165

170

162

170

脚长(码)

43

41

40

43

40

44

38

42

39

41

(Ⅰ)请根据“序号为5的倍数”的几组数据,求出关于的线性回归方程;

(Ⅱ)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成列联表,并根据列联表中数据说明能有多大的把握认为脚的大小与身高之间有关系.

附表及公式:.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

列联表:

高个

非高个

总计

大脚

非大脚

总计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在菱形ABCD中,∠A=60°,AB= ,将△ABC沿BD折起到△PBD的位置,若平面PBD⊥平面CBD,则三棱锥P﹣BCD的外接球体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

查看答案和解析>>

同步练习册答案