分析 设AQ=x,AP=y,利用直角三角形中的边角关系求得tan∠DCQ=$\frac{DQ}{DC}$=1-x,tan∠BCP=1-y,再两角和的正切公式求得tan(∠DCQ+∠BCP)=1,可得∠DCQ+∠BCP=45°,从而求得∠PCQ=45°.
解答 解:设AQ=x,AP=y,则DQ=1-x,PB=1-y,(0<x<1,0<y<1),
则tan∠DCQ=$\frac{DQ}{DC}$=1-x,tan∠BCP=1-y,tan(∠DCQ+∠BCP)=$\frac{(1-x)+(1-y)}{1-(1-x)(1-y)}$=$\frac{2-(x-y)}{x+y-xy}$ ①.
在Rt△APQ中,PQ2=AQ2+AP2=x2+y2,又PQ=2-(x+y),∴(2-x-y)2=x2+y2,即 xy=2(x+y)-2 ②.
把②代入①可得tan(∠DCQ+∠BCP)=1,∴∠DCQ+∠BCP=45°,∴∠PCQ=45°.
点评 本题主要考查直角三角形中的边角关系,两角和的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{55}{2}$ | B. | -$\frac{55}{2}$ | C. | -28 | D. | 28 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=3x-3 | B. | y=2x+1 | C. | y=x+1 | D. | y=0.5x+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com