精英家教网 > 高中数学 > 题目详情
13.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则(  )
A.A⊆BB.B⊆AC.A=BD.A∩B=ϕ

分析 由于2k+1,k∈Z表示所有的奇数,4k+1,k∈Z表示奇中被4除余1的整数,只是奇数的一部分,而A={x|x=(2k+1)π,k∈Z},B={x|x=(4k+1)π,k∈Z},从而可判断集合A,B的关系.

解答 解:∵A={x|x=2kπ+π,k∈Z}={x|x=(2k+1)π,k∈Z},B={x|x=4kπ+π,k∈Z}={x|x=(4k+1)π,k∈Z},
而2k+1,k∈Z表示所有的奇数,4k+1,k∈Z表示奇中被4除余1的整数,只是奇数的一部分,
∴B⊆A.
故选:B.

点评 本题主要考查了集合的包含关系的判断,解题的关键是弄清楚两集合的元素代表了哪些数,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知倾斜角为θ的直线,与直线x-3y+1=0垂直,则$\frac{2}{{3{{sin}^2}θ-{{cos}^2}θ}}$=(  )
A.$\frac{10}{3}$B.一$\frac{10}{3}$C.$\frac{10}{13}$D.一$\frac{10}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,某地要在矩形区域OABC内建造三角形池塘OEF,E,F分别在AB,BC边上,OA=5米,OC=4米,∠EOF=$\frac{π}{4}$,设CF=x,AE=y.
(1)试用解析式将y表示成x的函数;
(2)求三角形池塘OEF面积S的最小值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$f(x)=kx+m,g(x)=lnx-\frac{1}{x}$.
(1)若函数f(x)-g(x)在区间(0,+∞)上减函数,求k的取值范围;
(2)当k=2时,若函数f(x)的图象是函数g(x)的图象的切线,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知cos2α=$\frac{4}{5}$,求sin2α,tan2α以及cos4α+sin4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若集合A={x||x-1|<2},B={x|$\frac{x-2}{x+4}$<0},则A∩B=(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“a<2”是“实系数一元二次方程x2+ax+1=0有虚根”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集U=R,集合A={x|x2-2ax-3a2<0},B={x|x2-2x-a2-2a<0}.
(1)当a=12时,求(∁UB)∩A;
(2)命题P:x∈A,命题q:x∈B,若q是P的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.化简$\frac{2co{s}^{2}x-1}{2tan(\frac{π}{4}-x)si{n}^{2}(\frac{π}{4}+x)}$=1.

查看答案和解析>>

同步练习册答案