精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数上的最小值;

(2)若,不等式恒成立,求的取值范围;

(3)若,不等式恒成立,求的取值范围

【答案】(1)(2)(3)

【解析】试题分析:1a=0时, ,由此利用导数性质能求出函数f(x)在上的最小值.(2)函数f(x)在区间(0,x0)上递减,在(x0,+∞)上递增,由x>0,不等式f(x)≥1恒成立,得lnx0+2x02e2x0≤0,由此能求出a的取值范围.(3)由,得对任意成立,令函数,∴由此利用导数研究单调性能求出a的取值范围.

试题解析:

解(1)时,

∴函数上是增函数,

又函数的值域为

,使得

又∵,∴,∴当时,span>

即函数在区间上递增,∴.

(2)

由(1)知函数上是增函数,且,使得

进而函数在区间上递减,在上递增,

,得:

,∴

,不等式恒成立,

,∴

,则为增函数,且有唯一零点,设为

,则,即

,则单调递增,且

,即,∵为增函数,

则当时, 有最大值,

,∴的取值范围是.

(3)由,得

,∴对任意成立,

令函数,∴

时, ,当时,

∴当时,函数取得最小值

,∴的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人进行射击比赛,各射击局,每局射击次,射击命中目标得分,未命中目标得分,两人局的得分情况如下:

)若从甲的局比赛中,随机选取局,求这局的得分恰好相等的概率.

)如果,从甲、乙两人的局比赛中随机各选取局,记这局的得分和为,求的分布列和数学期望.

)在局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出的所有可能取值.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),将的图象向左平移个单位长度后得到的图象,且在区间内的最大值为.

(1)求实数的值;

(2)在中,内角 的对边分别是 ,若,且,求的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 是正三角形,面 的重心分别为 .

(1)证明:

(2)求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数).

)若,求函数处的切线方程.

)求函数的单调区间.

)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆 的长轴长为4,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点作一条不与坐标轴平行的直线,若交椭圆两点,点关于原点的对称点为,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在分以下的学生后, 共有男生名,女生名,现采用分层抽样的方法,从中抽取了名学生,按性别分为两组,并将两组学生成绩分为组, 得到如下频数分布表.

)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,能否判断数学成绩与性别有关;

)规定分以上为优分(含分),请你根据已知条件完成列联表,并判断是否有%以上的把握认为“数学成绩与性别有关”,( ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限相交于点 .

(1)求椭圆的标准方程;

(2)设椭圆的左顶点为,右顶点为,点是椭圆上的动点,且点与点 不重合,直线与直线相交于点,直线与直线相交于点,求证:以线段为直径的圆恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知短轴长为2的椭圆直线的横、纵截距分别为,且原点到直线的距离为

1)求椭圆的方程;

2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程

查看答案和解析>>

同步练习册答案