精英家教网 > 高中数学 > 题目详情

【题目】用红、黄、蓝三种不同颜色给图中的个矩形随机涂色,每个矩形只涂一种颜色,则个矩形颜色都相同的概率是________个矩形颜色都不同的概率是________.

【答案】

【解析】

列举出所有的基本事件以及事件“个矩形颜色都相同”和事件“个矩形颜色都不同”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率.

以“红黄蓝”表示从左到右三个矩形所涂的颜色,则所有的基本事件有:红红红、红红黄、红红蓝、红黄红、红黄黄、红黄蓝、红蓝红、红蓝黄、红蓝蓝、黄红红、黄红黄、黄红蓝、黄黄红、黄黄黄、黄黄蓝、黄蓝红、黄蓝黄、黄蓝蓝、蓝红红、蓝红黄、蓝红蓝、蓝黄红、蓝黄黄、蓝黄蓝、蓝蓝红、蓝蓝黄、蓝蓝蓝,共个基本事件,

事件“个矩形颜色都相同”所包含的基本事件有:红红红、黄黄黄、蓝蓝蓝,共个基本事件,所以,个矩形颜色都相同的概率是.

事件“个矩形颜色都不同”所包含的基本事件有:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝黄红、蓝红黄,共个基本事件,所以,个矩形颜色都不同的概率是.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖励金额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:,其中哪个模型能符合公司的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入世纪以来,该产品的产量平稳增长.记年为第年,且前年中,第年与年产量万件之间的关系如下表所示:

近似符合以下三种函数模型之一:

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,年的年产量比预计减少,试根据所建立的函数模型,确定年的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1,平行四边形中, ,现将沿折起,得到三棱锥(如图2),且,点为侧棱的中点.

(1)求证: 平面

(2)求三棱锥的体积;

(3)在的角平分线上是否存在点,使得平面?若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】因客流量临时增大,某鞋店拟用一个高为50(即)的平面镜自制一个竖直摆放的简易鞋镜,根据经验:一般顾客的眼睛到地面的距离为)在区间内,设支架高为,顾客可视的镜像范围为(如图所示),记的长度为).

(I)当时,试求关于的函数关系式和的最大值;

(II)当顾客的鞋在镜中的像满足不等关系(不计鞋长)时,称顾客可在镜中看到自己的鞋,若使一般顾客都能在镜中看到自己的鞋,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.


46.6

563

6.8

289.8

1.6

1469

108.8

表中==

(Ⅰ)根据散点图判断,,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)根据()的判断结果及表中数据,建立y关于x的回归方程;

(III)已知这种产品的年利zx,y的关系为,根据()的结果回答下列问题:

(Ⅰ)当年宣传费时,年销售量及年利润的预报值时多少?

(Ⅱ)当年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;

(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.

(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;

(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体.

(1)证明:平面

(2)求异面直线所成的角.

查看答案和解析>>

同步练习册答案