【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数,).在极坐标系(以坐标原点为极点,以轴非负半轴为极轴)中,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线上恰有一个点到曲线的距离为1,求曲线的直角坐标方程.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程及曲线的直角坐标方程;
(2)设点,直线与曲线相交于两点,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a∈R,数列{an}满足a1=a,an+1=an﹣(an﹣2)3,则( )
A.当a=4时,a10>210B.当时,a10>2
C.当时,a10>210D.当时,a10>2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.
(1)求证:平面.
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格,现有A,B,C三名学生报名参加该高校的综合评价,假设A,B,C三位学生材料初审合格的概率分别是,,;面试合格的概率分别是,,.
(1)求A,B两位考生有且只有一位考生获得录取资格的概率;
(2)记随机变量X为A,B,C三位学生获得该高校综合评价录取资格的人数,求X的概率分布与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区为了了解业主用水情况,该小区分为一期和二期,入住共达4000户,现在通过随机抽样获得了100户居民的月均用水量,下图是调查结果的频数分布表和频率分布直方图.
分组 | |||||
频数 | 4 | 8 | 15 | 22 | 25 |
分组 | |||||
频数 | 14 | 6 | 4 | 2 |
(1)估计该小区月均用水量超过3.8吨约有多少户;
(2)通过频率分布直方图,估计该小区居民月均用水量平均值和中位数?查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小芳、小明两人各拿两颗质地均匀的骰子做游戏,规则如下:若掷出的点数之和为4的倍数,则由原投掷人继续投掷;若掷出的点数之和不是4的倍数,则由对方接着投掷.
(1)规定第1次从小明开始.
(ⅰ)求前4次投掷中小明恰好投掷2次的概率;
(ⅱ)设游戏的前4次中,小芳投掷的次数为,求随机变量的分布列与期望.
(2)若第1次从小芳开始,求第次由小芳投掷的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com