精英家教网 > 高中数学 > 题目详情
16.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=$\frac{π}{6}$,C=$\frac{π}{4}$,求:(1)c,a的值(2)△ABC的面积.

分析 (1)利用正弦定理列出关系式,将b,sinB,sinC的值代入计算即可求出c的值,利用两角和与差的正弦函数公式化简sin(B+C),将各自的值代入求出sin(B+C)的值,进而确定出sinA的值,利用正弦定理即可求a.
(2)由b,c的值,利用三角形的面积公式即可求出三角形ABC的面积.

解答 解:(1)∵b=2,B=$\frac{π}{6}$,C=$\frac{π}{4}$,
∴由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$,得:c=$\frac{bsinC}{sinB}$=$\frac{2×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=2$\sqrt{2}$;
∵B=$\frac{π}{6}$,C=$\frac{π}{4}$,
∴sinA=sin(B+C)=sin($\frac{π}{6}$+$\frac{π}{4}$)=$\frac{1}{2}$×$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
∴a=$\frac{bsinA}{sinB}$=$\frac{2×\frac{\sqrt{2}+\sqrt{6}}{4}}{\frac{1}{2}}$=$\sqrt{2}+\sqrt{6}$.
(2)△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2×2$\sqrt{2}$×$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\sqrt{3}$+1.

点评 此题考查了正弦定理,三角形面积公式,以及两角和与差的正弦函数公式,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列赋值语句正确的是(  )
A.a+b=5B.5=aC.a+b=cD.a=a+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)f(b),且f(1)=1,则$\frac{f(2)}{f(1)}+\frac{f(3)}{f(2)}+\frac{f(4)}{f(5)}+…+\frac{f(2015)}{f(2014)}$=2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,若Sn=2an+n,且bn=$\frac{{a}_{n}-1}{{a}_{n}{a}_{n+1}}$.
(1)求{an}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1,过圆心O做BC的平行线,分别交EC和AC于点D和点P,求OD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}\right.$则目标函数z=$\frac{y+1}{x+1}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足${a_1}=\frac{7}{6}$,${a_{n+1}}=\frac{1}{2}{a_n}+\frac{1}{3}$,
(1)当${a_n}≠\frac{2}{3}$时,求证{${a_n}-\frac{2}{3}$}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在R上的偶函数,且在(-∞,0]上单调递减,若f(1-2a)<f(|a-2|),则实数a的取值范围为(  )
A.a<1B.a>1C.-1<a<1D.a<-1或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i是虚数单位,复数$\frac{5}{2-i}-i$=(  )
A.i-2B.2+iC.-2D.2

查看答案和解析>>

同步练习册答案