精英家教网 > 高中数学 > 题目详情

已知数学公式,则A∪B=


  1. A.
    (1,2)
  2. B.
    (2,3)
  3. C.
    (-∞,0)∪(1,+∞)
  4. D.
    (-∞,0)∪(1,2)
C
分析:分别求出两集合中不等式的解集,确定出A与B,找出既属于A又属于B的部分,即可求出两集合的并集.
解答:由集合A中的不等式变形得:x(x-2)>0,
解得:x<0或x>2,
∴A=(-∞,0)∪(2,+∞),
由集合B中的不等式变形得:(x-3)(x-1)<0,
解得:1<x<3,
∴集合B=(1,3),
则A∪B=(-∞,0)∪(1,+∞).
故选C
点评:此题属于以不等式的解法为平台,考查了并集及其运算,熟练掌握并集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有-a∉A,则称集合A具有性质P.
(Ⅰ)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(Ⅱ)对任何具有性质P的集合A,证明:n≤
k(k-1)2

(Ⅲ)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题中真命题的个数是(  )
(1)若k∈R,且k
b
=
0
,则k=0或
b
=
0

(2)若
a
b
=0
,则
a
=
0
b
=
0

(3)若不平行的两个非零向量
.
a
.
b
,满足|
.
a
|=|
.
b
|
,则(
.
a
+
.
b
)•(
.
a
-
.
b
)=0

(4)若
.
a
.
b
平行,则
a
b
=|
.
a
|•|
.
b
|

查看答案和解析>>

科目:高中数学 来源:北京高考真题 题型:解答题

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n,若对于任意的a∈A,总有-aA,则称集合A具有性质P。
(1)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(2)对任何具有性质P的集合A,证明: n≤
(3)判断m和n的大小关系,并证明你的结论。

查看答案和解析>>

科目:高中数学 来源:月考题 题型:解答题

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有﹣aA,则称集合A具有性质P.
(I)检验集合{0,1,2,3}与{﹣1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(II)对任何具有性质P的集合A,证明: ;
(III)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市万州二中高一(上)期末数学试卷(解析版) 题型:解答题

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有-a∉A,则称集合A具有性质P.
(I)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(II)对任何具有性质P的集合A,证明:
(III)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案