精英家教网 > 高中数学 > 题目详情

【题目】已知在四棱柱ABCDA1B1C1D1中,底面ABCD是菱形,且平面A1ADD1⊥平面ABCDDA1DD1,点EF分别为线段A1D1BC的中点.

1)求证:EF∥平面CC1D1D

2)求证:AC⊥平面EBD.

【答案】1)证明见解析;(2)证明见解析;

【解析】

1)连接,通过证明四边形是平行四边形,证得,由此证得平面.

2)通过证明,结合面面垂直的性质定理证得平面,由此证得,由菱形的性质得到,从而证得平面.

1)连结CD1,四棱柱ABCDA1B1C1D1中,A1B1C1D1BB1C1C是平行四边形,

A1D1//B1C1BC//B1C1,且A1D1B1C1BCB1C1

又∵点EF分别为线段ADBC的中点,

ED1//FCED1FC

所以四边形ED1CF是平行四边形,

EF//CD1,又∵EF平面CC1D1DCD平面CC1D1D

EF//平面CC1D1D.

2)四棱柱ABCDA1B1C1D1中,四边形AA1D1D是平行四边形,

AD//A1D1,在△DA1D1中,DA1DD1,点E为线段A1D1的中点,

DEA1D1,又∵AD//A1D1,∴DEAD

又∵平面A1ADD1⊥平面ABCD,平面A1ADD1平面ABCDADDE平面A1ADD1

DE⊥平面ABCD,又AC平面ABCD,∴DEAC

∵底面ABCD是菱形,∴BDAC

又∵BDDEDBDDE平面EBD

AC⊥平面EBD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】福利彩票双色球中红色球由编号为个球组成.某彩民利用下面的随机数表选取组数作为个红色球的编号,选取方法是从随机数表(如下)第行的第列数字开始从左向右依次选取两个数字,则选出来的第个红色球的编号为(

49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 17 34 91 64

57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020110日,引发新冠肺炎疫情的COVID-9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出现抗体与上次接种无关.

1)求一个接种周期内出现抗体次数的分布列;

2)已知每天接种一次花费100元,现有以下两种试验方案:

①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;

②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.

比较随机变量的数学期望的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】0,1,2,3,4,5,6中取出三个不同的数字组成一个三位数,则这个三位数的各个位上的数字之和为奇数的取法共有_________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数在区间上的最值;

(Ⅱ)若是函数的两个极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴非负半轴为极轴建立极坐标系,直线l的极坐标方程为.

1)求曲线C的普通方程和直线l的直角坐标方程;

2)点P是曲线C上的动点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于岁的人中随机地抽取人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.

组数

分组

“环保族”人数

占本组的频率

第一组

第二组

第三组

第四组

第五组

1)求的值;

2)根据频率分布直方图,估计这人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);

3)从年龄段在的“环保族”中采取分层抽样的方法抽取人进行专访,并在这人中选取人作为记录员,求选取的名记录员中至少有一人年龄在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,侧面为矩形,.将翻折至,使在平面内.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形ABCD是平行四边形,.

1)求PC的长;

2)求AP与平面PBC所成角的正弦值.

查看答案和解析>>

同步练习册答案