精英家教网 > 高中数学 > 题目详情
6.$\frac{si{n}^{2}50°}{1+sin10°}$=$\frac{1}{2}$.

分析 根据同角三角函数关系式和二倍角公式化简即可求解.

解答 解:由$\frac{si{n}^{2}50°}{1+sin10°}=\frac{\frac{1}{2}-\frac{1}{2}cos100°}{1+sin10°}=\frac{\frac{1}{2}(1+sin10°)}{1+sin10°}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$

点评 本题主要考察同角三角函数关系式和二倍角公式化简计算能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设a,b,c是三条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )
A.若α⊥β,α⊥γ,则β⊥γB.若a,b与c所成的角相等,则a∥b
C.若α⊥α,α∥β,则α⊥βD.若a∥b,a?α,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)在(-∞,+∞)上有意义,对于给定的正数k,定义函数fk(x)=$\left\{\begin{array}{l}{f(x),f(x)<k}\\{k,f(x)≥k}\end{array}\right.$取k=3,f(x)=($\frac{k}{2}$)|x|,则fk(x)=$\frac{k}{2}$的零点有(  )
A.0个B.1个
C.2个D.不确定,随k的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,a1=1,a2=3,且an+2=3an+1-2an,数列{bn}满足bn=an+1-an,则$\frac{lg{b}_{n+2}-lg{b}_{n+1}}{lg{b}_{n+1}-lg{b}_{n}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=|asinx+bcosx-1|+|bsinx-acosx|(a,b∈R)的最大值为11,则a2+b2=50.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2+x-2<0},B={x|2x>1},则A∩(∁UB)=(  )
A.(0,1)B.(-2,0)C.(-2,0]D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ax-(k+1)a-x(a>0且a≠1)是定义在R上的奇函数.
(1)求k的值;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在[0,+∞)上的最小值为-6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{1}{3}{x^3}-2{x^2}+3m,x∈[{0,+∞})$,若f(x)+5≥0恒成立,则实数m的取值范围是(  )
A.$[{\frac{17}{9},+∞})$B.$({\frac{17}{9},+∞})$C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0\;,b>0)$的左、右焦点分别为F1(-c,0),F2(c,0),若双曲线上存在一点P使asin∠PF2F1=csin∠PF1F2,则该双曲线的离心率的取值范围是$(1\;,\;1+\sqrt{2}]$.

查看答案和解析>>

同步练习册答案