精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中直线A1C1与平面A1BD夹角的余弦值是(  )
A.
2
4
B.
2
3
C.
3
3
D.
3
2
设正方体ABCD-A1B1C1D1棱长为a,构造三棱锥C1-A1DB,其体积为:
∵V=V正方体-4V A-A1BD=a3-4×
1
6
a3=
1
3
a3
设点C1到平面A1BD的距离是h,
又三棱锥C1-A1DB的体积=
1
3
×SA1BD×h,
1
3
a3=
1
3
×SA1BD×h,
∴h=
2
3
a
3

设直线A1C1与平面A1BD夹角为α,则sinα=
2
3
a
3
2
a
=
6
3

cosα=
1-(
6
3
)2
=
3
3

即直线A1C1与平面A1BD夹角的余弦值是
3
3

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=
3
,则异面直线AD,BC所成的角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D中,异面直线A1D与D1C所成的角为______度;直线A1D与平面AB1C1D所成的角为______度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA、AB、AD两两互相垂直,BCAD,且AB=AD=2BC,E,F分别是PB、PD的中点.
(1)证明:EF平面ABCD;
(2)若PA=AB,求PC与平面PAD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,直线AD1与平面BB1D1D所成角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,SA=AD,M为AB的中点,N为SC的中点.
(1)求证:MN平面SAD;
(2)求证:平面SMC⊥平面SCD;
(3)记
CD
AD
,求实数λ的值,使得直线SM与平面SCD所成的角为30°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为2的正方体ABCD-A1B1C1D1中,M,N分别是A1A,B1B的中点.
(1)求直线D1N与平面A1ABB1所成角的大小;
(2)求直线CM与D1N所成角的正弦值;
(3)(理科做)求点N到平面D1MB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将等边三角形ABC沿中线AD对折使BD⊥AC,那么AB与平面ACD所成的角是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

同步练习册答案